首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 156 毫秒
1.
生物质先进再燃脱硝特性研究   总被引:3,自引:0,他引:3  
在沉降炉上研究草本类棉秆、玉米秸、麦秆和木本类梧桐木四种生物质的先进再燃脱硝特性。结果表明,20%再燃比、0.7s停留时间能保证较优的反应工况。在过量空气系数为0.7~0.9、氨氮摩尔比为1.5左右时,棉杆、玉米秸、麦秆以及梧桐木先进再燃在1273K附近取得最高脱硝效率,其值分别为89.11%、88.34%、90.33%和88.28%,比基本再燃提高25%~30%,并且生物质的再燃反应是脱硝的主体,喷氨是对再燃的完善和优化。在1173K~1473K四种生物质的先进再燃可以保持80%以上的脱硝效率。实验过程中加入100×10-6的碱金属、碱土金属添加剂可进一步改良先进再燃脱硝进程。碳酸钠、碳酸钾使脱硝效率提高3%~6%;醋酸钙在1273K~1473K将脱硝率提高4.0%~5.0%,在1073K~1273K作用规律不明显。  相似文献   

2.
以稻壳(RH)、梧桐叶(PTL)和木屑(SD)为对象,利用携带流脱硝实验装置,研究了生物质种类、再燃反应温度(t2)、再燃区化学计量比(SR2)、喷氨位置、水蒸气以及添加剂等对生物质高级再燃(AR)脱硝效率的影响,分析了高级再燃过程中钾和氯等元素的释放特性。结果表明,在t2为850~1 150℃,随着t2升高,生物质高级再燃脱硝效率呈现先上升后下降的趋势。在SR2为0.5~1.0,随着SR2增加,稻壳高级再燃脱硝效率呈现先增加后降低的趋势。停留时间为0.4~1.0 s,氨气添加位置对稻壳高级再燃脱硝效率有一定的影响,但其效果并不明显。烟气中水蒸气含量(0~15%)可提高稻壳高级再燃的脱硝效率,而且可拓宽脱硝温度窗口。不同再燃温度下,4%水蒸气含量模拟烟气的脱硝效率最大。添加剂(Fe2O3、KCl、NaCl和CaO)对稻壳高级再燃脱硝均有促进作用,其中,Fe2O3促进作用最为显著。在稻壳高级再燃过程中,氯和钾元素释放率分别达到95.0%和59.8%以上。  相似文献   

3.
在O2/CO2气氛下利用沉降炉脱硝实验台,对木醋调质石灰石和醋酸钙的再燃/先进再燃脱硝特性以及氨气的选择性非催化还原脱硝特性进行了研究。结果表明,木醋调质石灰石和醋酸钙的再燃脱硝效率随温度的升高先提高后降低,1 323 K时获得最高脱硝效率分别为82.70%和78.52%;再燃脱硝氧浓度不宜过高,合适的再燃比为14%~17%,停留时间为0.8 s。氨气选择性非催化还原脱硝在1 173 K时获得最高脱硝效率为95.41%,温度窗口为1 142~1 335 K;随着氧浓度的增大,脱硝效率不断降低,反应适宜的氨氮比为1.5,停留时间为1.2 s。按氨氮比0.75向再燃区喷入氨气可显著提高木醋调质石灰石和醋酸钙的再燃脱硝效率,同时脱硝反应适宜的温度区间也得到显著拓宽,1 323 K时两者获得的先进再燃脱硝效率分别为93.49%和92.79%。  相似文献   

4.
在一维携带流实验台上研究了烟煤煤粉着火模式,包括均相着火和非均相着火,对煤粉再燃还原NO的影响。实验结果表明,温度一定时,随着再燃区氧体积分数的增加,煤粉挥发分首先着火,脱硝效率明显下降;而非均相着火初期造成的颗粒高温有利于异相还原NO,脱硝效率得以回升;氧体积分数进一步提升,再燃区呈现富氧状态,脱硝效率再次下降。提高再燃区温度促进煤粉还原NO,脱硝效率更高,但是也促使挥发分在更低的氧体积分数下着火,着火后脱硝效率下降更多;粒径对煤粉着火以及还原NO的影响较为复杂,粒径在40μm以上,不同氧体积分数下脱硝效率基本上随粒径增大而下降。  相似文献   

5.
煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响   总被引:13,自引:4,他引:13  
煤粉再燃技术是目前电站锅炉降低Nx排放的一种有效技术。本文在一维沉降炉上进行了不同煤种、不同煤粉细度的煤粉再燃脱硝降低NOx排放的试验研究。试验结果表明:高挥发分的煤种在再燃降低NOx时的效果更显著。对于同一煤种,采用细度更细的煤,合适的再燃区停留时间,可以获得高的降低NOx排放效果,并可使煤粉的燃尽率达到90%左右。本文还采用最小燃尽高度的方法探讨了再燃过程中煤粉细度的选择方法,分析得出,为使再燃区的煤粉能完全燃烧,充分发挥还原NOx的效果,必须采用细粉或者超细粉。  相似文献   

6.
生物质气再燃减少流化床N_2O排放的实验研究   总被引:2,自引:1,他引:1  
以生物质气化气作为再燃燃料,在小型流化床反应器内进行了N2O脱除的实验研究。研究了生物质气化气投入位置、料层高度、再燃燃料比、烟气含氧量和反应温度对N2O排放的影响。结果表明,距布风板200 mm的B喷口较离布风板较近的A喷口(距布风板100 mm)对应的N2O转化率高;反应温度为850℃、按照N2O/N2配置模拟烟气的情况下,B口喷入生物质气量为1%,床料CaO高度为10 mm时N2O接近完全分解;反应温度为850℃,床层高度大于20 mm时,从B口喷入大于0.4%比例的生物质气对应N2O分解率高于95%。  相似文献   

7.
煤燃烧排放出大量有毒气体,2000年燃煤发电厂NOx排放为2.9×107 t ,预计2010年加上燃油产生的NOx,中国的NOx总排放量可能超过1×108 t[1].中国酸雨污染也正在由过去的硫酸型向硫硝酸混合型转变[2],这引起了政府部门的高度关注.目前,已经采取了诸如低NOx燃烧器、分级配风、火上风 (Over Fire Air) 、再燃等技术措施降低NOx排放,取得了一定的效果.其中,再燃技术是降低NOx排放最有效的措施之一.它将炉膛分为主燃区、再燃区和燃尽区.燃料分级送入炉膛,在主燃区火焰上方喷入碳氢燃料,以建立贫氧富燃料区促使主燃区生成的NOx还原为无害的N2 [3,4],最后送入燃尽风以进一步燃尽燃料.国内外研究者围绕再燃脱硝运行参数、同相和异相还原机理做了大量研究[4~8],而国外90年代中后期兴起的高级再燃技术,是再燃技术与氮催化射入技术的结合,是一种更有效的NOx控制技术[7,9],脱硝率可达85%以上,受到了世界各国的普遍关注[10~13],目前,中国对高级再燃技术的研究刚刚起步.  相似文献   

8.
在程序控温电加热水平陶瓷管反应器、N2气氛和模拟烟气气氛及300~1 100℃时,对甲烷在金属铁及其氧化铁表面还原NO的特性进行了实验研究。为使甲烷在脱硝反应后完全燃尽以及脱硝反应过程生成的CO等中间产物完全燃尽,在第一段加热炉后串联了第二段加热炉,补充氧气,实现燃尽。结果表明,甲烷在金属铁及氧化铁表面能够高效地还原NO。在N2气氛中,在900℃以上温度范围内甲烷在金属铁表面的脱硝效率超过95%,与甲烷在氧化铁表面的脱硝效率差别很小。在模拟烟气条件下,当过量空气系数小于1.0时,在900℃以上时,甲烷在金属铁和氧化铁表面的脱硝效率都能超过90%,且未燃尽和燃尽两种条件下NO的还原率相差不大。NO同时通过金属铁的直接还原和甲烷的再燃还原两种反应机理脱除。而甲烷则通过还原氧化铁为金属铁,从而使金属铁直接还原NO可持续进行。同时,甲烷再燃反应的中间产物HCN/NH3等被氧化铁还原,从而使燃尽后的脱硝效率不下降。研究结果表明,甲烷和金属铁或氧化铁在富燃料条件下可有效地还原NO。  相似文献   

9.
在模拟水泥分解炉的实验台架上研究CO_2浓度(体积分数0-35%)对污泥再燃还原性气体析出特性及其对污泥与污泥焦还原NO反应的动态变化规律的影响。结果表明,污泥再燃产生的还原性气体主要为HCN、NH_3、CH_4及CO;当CO_2浓度从0增加到25%时,由于CO_2与污泥焦气化作用增强,导致HCN、NH_3及CH_4的析出量缓慢下降,而CO析出量显著增加,最终促进NO还原率从51%增加至61%;继续增加CO_2浓度至35%,由于CO_2的辐射吸收导致局部热不稳定性增强,气化作用的减弱导致CO析出量下降,且HCN析出量有较大幅度下降,NH_3析出量变化不大,CH_4析出量有一定幅度上升,综合影响使得NO的还原率逐渐下降至55%。研究表明,实验室条件下污泥再燃能较高效地对烟气中NO进行还原;机理研究表明,污泥再燃过程中同时存在对NO的气气均相还原反应和气固异相还原反应,实验确定污泥焦对NO的气固异相还原率仅为18%,因此,污泥脱硝以气气均相还原反应为主。  相似文献   

10.
乙烷在金属铁表面还原NO的实验研究   总被引:1,自引:0,他引:1  
温度300~1 100 ℃时,由程序控温电加热水平陶瓷管反应器在N2气氛和模拟气氛下,对乙烷在金属铁表面还原NO的特性进行了实验研究。结果表明,乙烷在金属铁表面能够高效地还原NO。在N2气氛中,温度高于900 ℃时,乙烷在金属铁表面的脱硝效率超过95%。在模拟烟气条件下,当温度超过900 ℃,且过量空气系数小于1.0时,乙烷在金属铁表面还原NO的效率能够达到90%以上。相同条件下,乙烷在金属铁表面脱硝效率高于甲烷的脱硝效率。SO2对乙烷在金属铁表面还原NO的效率影响可以忽略。对反应后的铁样品的组分进行了XRD表征,在此基础上对反应机理进行了分析。结果表明,在模拟烟气条件下NO的还原通过乙烷的再燃脱硝和金属铁直接还原两个机理完成。金属铁直接还原NO时生成的氧化铁则被乙烷还原为金属铁,从而使得金属铁能够持续对NO进行直接还原。乙烷再燃还原NO的中间产物HCN被氧化铁氧化为N2,同时氧化铁也被HCN还原为金属铁。这一过程增强了NO的持续还原反应,同时避免了在燃尽时HCN二次氧化重新生成NO,从而保证了较高的NO还原效率。  相似文献   

11.
采用两段反应器研究了三种煤在不同燃烧方式下抑制NOx生成的效果。结果表明,煤的热解气和部分气化生成气再燃均能较好的抑制NOx生成,抑制效果优于空气分级燃烧,解耦燃烧方式抑制NOx生成的效果最显著,相对于传统燃烧其NOx排放降低了32%以上。煤种对各种燃烧方式降低NOx的程度有明显影响,煤中单位氮含量的燃料比(固定碳/挥发分)越小,煤的热解气和部分气化生成气再燃以及解耦燃烧方式下NOx的排放量越低。在煤部分气化生成气再燃烧方式中,部分氧化气化段通氧量不同,降低NOx排放的效果也不同,在氧气体积分数为8%~10%时的NOx生成量最低。基于解耦燃烧技术原理,研制了1.4 MW解耦燃烧工业锅炉,在燃烧同一煤种时,解耦燃烧锅炉和传统立式锅炉相比,烟气中NOx排放量降低了32.9%。  相似文献   

12.

With the increasing depletion of fossil energy, the refuse-derived fuel (RDF) as an unavoidable by-product of human activities has been used as an alternative fuel in the precalciner cement kilns. Since the RDF combustion also brings the problems of NOx pollution, it is quite important to find ways to lower the NOx emission during RDF combustion in the precalciner. The pyrolysis characteristics and products of RDF were studied by TG-FTIR and Py-GC/MS. From TG-FITR and Py-GC/MS tests, various carboxylic acids and alkenes formed with NOx released at the RDF pyrolysis process at 200–550 °C. By simulating the temperature (700 °C, 800 °C and 900 °C) and O2 (12%, 14%, 16%, 18% and 21%) environment of the precalciner using a double furnaces reactor, the combustion processes and NOx formation characteristics of RDF combustion were studied. The results showed that the volatile-N was the dominant reactant source of fuel NOx during RDF combustion. The fuel-N conversion and NOx emission yield showed a continuous decreasing trend with temperature increasing from 700 to 900 °C. The fuel-N conversion and NOx emission yield showed a slight increasing trend with the oxygen concentration increase, and the optimum oxygen concentration for RDF combustion was 14%. In this study, the optimum temperature was 900 °C and oxygen concentration was 14% for de-NOx in the precalciner.

  相似文献   

13.
乙醇/柴油混合燃料的相溶性及对发动机性能影响的研究   总被引:2,自引:0,他引:2  
利用助溶剂解决乙醇/柴油的相溶性问题,讨论了混合燃料中乙醇和助溶剂添加量对相溶性的影响,并使用助溶剂体积分数为1.5%、乙醇体积分数分别为5%、10%、15%的混合燃料及 20号纯柴油(分别表示为E5、E10、E15和 E0)在发动机台架上进行了性能和排放试验。研究结果表明,柴油的烃组成是决定相分离温度的决定性因素;对全部测试油品,乙醇体积分数在10%、助溶剂添加体积分数为1.5%时,混合燃料相溶性较好。台架试验显示,随着混合燃料中乙醇掺烧比例的增加,发动机的燃油消耗率逐渐增加,而发动机的额定功率和最大扭矩逐渐降低,但最大扭矩降低的幅度较小;此外,随着乙醇掺烧比例的增加,CO比排放量减少,HC、NOx和PM的比排放量逐渐增加,但NOx和PM的比排放量增加幅度不大。10%体积分数的乙醇添加量是乙醇/柴油的最佳掺烧比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号