首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There has been considerable interest in the use of botanical supplements to protect skin from the adverse effects of solar UV radiation, including photocarcinogenesis. We and others have shown that topical application of (-)-epigallocatechin-3-gallate (EGCG) from green tea prevents photocarcinogenesis in mice; however, the chemopreventive mechanism of EGCG in an in vivo tumor model is not clearly understood. In this study, UV-B-induced skin tumors with and without treatment of EGCG ( approximately 1 mg/cm(2)) and age-matched skin biopsies from SKH-1 hairless mice were used to identify potential molecular targets of skin cancer prevention by EGCG. These biopsies were analyzed for various biomarkers of angiogenesis and antitumor immune response using immunostaining, Western blotting and gelatinolytic zymography. We report that compared to non-EGCG-treated tumors, topical application of EGCG in UV-induced tumors resulted in inhibition of protein expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, which play crucial roles in tumor growth and metastasis. In contrast, tissue inhibitor of MMP-1 (TIMP-1), which inhibits MMP activity, was increased in tumors. With respect to the tumor vasculature, EGCG decreased the expression of CD31, a cell surface marker of vascular endothelial cells, and inhibited the expression of vascular endothelial growth factor in tumors, which are essential for angiogenesis. EGCG inhibited proliferating cell nuclear antigen in UV-B-induced tumors as well. Additionally, higher numbers of cytotoxic T lymphocytes (CD8(+) T cells) were detected in EGCG-treated tumors compared with non-EGCG-treated tumors. Together, these in vivo tumor data suggested that inhibition of photocarcinogenesis in mice by EGCG is associated with inhibition of angiogenic factors and induction of antitumor immune reactivity.  相似文献   

3.
4.
Angiogenesis is one of the crucial steps in the transition of a tumor from a small, harmless cluster of mutated cells to a large, malignant growth, capable of spreading to other organs throughout the body. Vascular endothelial growth factor (VEGF) that stimulates vasculogenesis and angiogenesis is thought to be as an anti-angiogenic target for cancer therapy. Liquiritigenin (LQ), a flavanone existing in Radix glycyrrhiza, shows extensive biological activities, such as anti-inflammatory and anti-cancer properties. In our studies, liquiritigenin effectively inhibited the growth of tumors xenografted in nude mice from human cervical cancer cell line HeLa cells, and microvascular density (MVD) of the tumor exposed to liquiritigenin was reduced in a dose dependent manner, especially in the high dose group. Moreover, the expression and secretion of VEGF were down-regulated by the drug in vivo and in vitro. Therefore, liquiritigenin can be further studied on cancer and other diseases associated with VEGF up-regulation.  相似文献   

5.
To explore the functional mechanism of Resveratrol against colon cancer cells ls174t and the growth of colon cancer tissue of tumor-bearing mice, MTT method was used to observe the functions of resveratrol for inhibition against cells ls174t in vitro. Transmission electron microscope was used to observe the cell apoptosis. FCM assay was performed to measure the change of the cell apoptosis rate and of cell cycle. RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA. Western blot method was used to detect the expressions of bcl-2 and bax protein. Ceils ls174t were transplanted subcutaneously to nude mice to observe the effect of resveratrol on the growth of subcutaneously transplanted tumor, RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA in the tumor tissue. Western blot method was used to detect the expressions of bcl-2 and bax protein in the tumor tissue. Resveratrol has an effect of inhibiting proliferation of cells ls174t in vitro(P〈0.01). It is able to induce the apoptosis of cells ls174t, causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol could inhibit the growth of subcutaneously transplanted tumor of nude mice(P〈0.05), causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol can inhibit the growth of cells 174t and the growth of subcutaneously transplanted tumor. The mechanism is possibly related to the induction of the cell apoptosis and the regulation of bcl-2/bax expression.  相似文献   

6.
To explore the functional mechanism of Resveratrol against colon cancer cells Is174t and the growth of colon cancer tissue of tumor-bearing mice,MTT method was used to observe the functions of resveratrol for inhibition against cells ls174t in vitro.Transmission electron microscope was used to observe the cell apoptosis.FCM assay was performed to measure the change of the cell apoptosis rate and of cell cycle,RT-PCR method was used to detect the expressions of bc1-2 and bax mRNA.Western blot method was used to detect the expressions of bc1-2 and bax protein.Cells isi74t were transplanted subcutaneously to nude mice to observe the effect of resveratrol on the growth of subcutaneously transplanted tumor.RT-PCR method was used to detect the expressions of bc1-2 and bax mRNA in the tumor tissue.Western blot method was used to detect the expressions of bc1-2 and bax protein in the tumor tissue.Resveratrol has an effect of inhibiting proliferation of cells ls174t in vitro(P<0.01).It is able to induce the apoptosis of cells Is174t,causing the decrease in the expression of bc1-2 and the increase in the expression of bax.Resveratrol could inhibit the growth of subcutaneously transplanted tumor of nude mice(P<0.05),causing the decrease in the expression of bc1-2 and the increase in the expression of bax.Resveratrol can inhibit the growth of cells 174t and the growth of subcutaneously transplanted tumor.The mechanism is possibly related to the induction of the cell apoptosis and the regulation of bc1-2/bax expression.  相似文献   

7.
Direct administration of drugs and genes to the lungs by pulmonary delivery offers a potential effective therapy for lung cancers.In this study,combined doxorubicin(DOX)and Bcl2 siRNA was employed for cancer therapy using polyethylenimine(PEI)as the carrier of Bcl2 siRNA.Most of the DOX and siRNA possessed high cellular uptake efficiency in B16F10 cells,which was proved by FCM and CLSM analysis. Real-time PCR showed that PEI/Bcl2 siRNA exhibited high gene silencing efficiency with 70% Bcl2 mRNA being knocked down.The combination of DOX and siRNA could enhance the cell proliferation inhibition and the cell apoptosis against B16F10 cells compared to free DOX or PEI/Bcl2 siRNA.Furthermore,the biodistribution of DOX and siRNA via pulmonary administration was studied in mice with B16F10 metastatic lung cancer.The results showed that most of the DOX and siRNA were accumulated in lungs and lasted at least for 3 days,which suggested that combined DOX and siRNA by pulmonary administration may have high anti-tumor effects for metastatic lung cancer treatment in vivo.  相似文献   

8.
Nifuroxazide is an antidiarrheal medication that has promising anticancer activity against diverse types of tumors. The present study tested the anticancer activity of nifuroxazide against Ehrlich’s mammary carcinoma grown in vivo. Furthermore, we investigated the effect of nifuroxazide on IL-6/jak2/STAT3 signaling and the possible impact on tumor angiogenesis. The biological study was supported by molecular docking and bioinformatic predictions for the possible effect of nifuroxazide on this signaling pathway. Female albino mice were injected with Ehrlich carcinoma cells to produce Ehrlich’s solid tumors (ESTs). The experimental groups were as follows: EST control, EST + nifuroxazide (5 mg/kg), and EST + nifuroxazide (10 mg/kg). Nifuroxazide was found to reduce tumor masses (730.83 ± 73.19 and 381.42 ± 109.69 mg vs. 1099.5 ± 310.83) and lessen tumor pathologies. Furthermore, nifuroxazide downregulated IL-6, TNF-α, NFk-β, angiostatin, and Jak2 proteins, and it also reduced tumoral VEGF, as indicated by ELISA and immunohistochemical analysis. Furthermore, nifuroxazide dose-dependently downregulated STAT3 phosphorylation (60% and 30% reductions, respectively). Collectively, the current experiment shed light on the antitumor activity of nifuroxazide against mammary solid carcinoma grown in vivo. The antitumor activity was at least partly mediated by inhibition of IL-6/Jak2/STAT3 signaling that affected angiogenesis (low VEGF and high angiostatin) in the EST. Therefore, nifuroxazide might be a promising antitumor medication if appropriate human studies will be conducted.  相似文献   

9.
10.
11.
《化学:亚洲杂志》2018,13(18):2730-2738
A promising cancer‐targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF‐related apoptosis‐inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)−polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL‐induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer‐cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP‐2/MMP‐9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal‐based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.  相似文献   

12.
Arresting cancer proliferation by small-molecule gene regulation   总被引:4,自引:0,他引:4  
A small library of pyrrole-imidazole polyamide-DNA alkylator (chlorambucil) conjugates was screened for effects on morphology and growth characteristics of a human colon carcinoma cell line, and a compound was identified that causes cells to arrest in the G2/M stage of the cell cycle. Microarray analysis indicates that the histone H4c gene is significantly downregulated by this polyamide. RT-PCR and Western blotting experiments confirm this result, and siRNA to H4c mRNA yields the same cellular response. Strikingly, reduction of H4 protein by >50% does not lead to widespread changes in global gene expression. Sequence-specific alkylation within the coding region of the H4c gene in cell culture was confirmed by LM-PCR. The compound is active in a wide range of cancer cell lines, and treated cells do not form tumors in nude mice. The compound is also active in vivo, blocking tumor growth in mice, without obvious animal toxicity.  相似文献   

13.
14.
This study was designed to investigate the efficacy of photodynamic therapy (PDT) in treating colonic cancer in a preclinical study. Photofrin, a porphyrin mixture, and pheophorbide a (Ph a), a bacteriochlorin, were tested on HT29 human colonic tumor cells in culture and xenografted into athymic mice. Their pharmacokinetics were investigated in vitro, and the PDT efficacy at increasing concentrations was determined with proliferative, cytotoxic and apoptotic assessments. The in vivo distribution and pharmacokinetics of these dyes (30 mg/kg, intraperitoneal) were investigated on HT29 tumor-bearing nude mice. The inhibition of tumor growth after a single 100 J/cm2 PDT session was measured by the changes in tumor volume and by histological analysis of tumor necrosis. PDT inhibited HT29 cell growth in culture. The cell photodamage occurred since the time the concentrations of Ph a and Photofrin reached 5.10(-7) M (or 0.3 microg/mL) and 10 microg/mL, respectively. A photosensitizer dose-dependent DNA fragmentation was observed linked to a cleavage of poly(ADP-ribose) polymerase and associated with an increased expression of mutant-type p53 protein. PDT induced a 3-week delay in tumor growth in vivo. The tumor injury was corroborated by histological observation of necrosis 48 h after treatment, with a correlated loss of specific enzyme expression in most of the tumor cells. In conclusion, PDT has the ability to destroy human colonic tumor cells in vitro and in vivo. This tumoricidal effect is likely associated with a p53-independent apoptosis, as HT29 cells express only mutated p53. The current study suggests a preferential use of Photofrin in PDT of colonic cancer because it should be more effective in vivo than Ph a as a consequence of better tumor uptake.  相似文献   

15.
CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been reported to mediate the metastasis of many solid tumors including ovarian, breast, lung and prostate. The over-expression of the epidermal growth factor receptor (EGFR) is associated with the majority of ovarian cancer and has been implicated in the process of malignant transformation by promoting cell proliferation, survival, and motility. In this research, the result first showed that epidermis growth factor (EGF) enhanced the expression of CXCR4 and the migration of ovarian cancer cells, moreover, both stromal cell derived factor-1alpha (SDF-1alpha) and EGF-induced high matrix metallopeptidase 9 (MMP9) expressions. Molecular analysis indicated that augmented CXCR4 and MMP9 expression was regulated by phosphatidylinositol-3-kinase(PI3K)/Akt signal transduction pathway. These results suggested a possible important "cross-talk" between CXCR4 and EGFR intracellular pathways that might link signals of tumor deteriorated and provided a plausible explanation for the poor overall survival rate of patients whose co-expression of CXCR4 and EGFR was detected in their tissue sections. It enlightened that, compared to the respective inhibition of the EGFR or CXCR4 signaling, the simultaneous inhibition of them might be a more useful therapeutic strategy of cancer.  相似文献   

16.
17.
We developed a screening procedure to identify ligands from a phage display random peptide library that are selective for circulating bone marrow derived cells homing to angiogenic tumors. Panning the library on blood outgrowth endothelial cell suspension in vitro followed by in vivo selection based on homing of bone marrow-bound phage to angiogenic tumors, yielded the peptide QFPPKLTNNSML. Upon intravenous injection phage displaying this peptide homed to Lewis lung carcinoma (LLC) tumors in vivo whereas control phage did not localize to tumor tissue. Phage carrying the QFPPKLTNNSML peptide labeled with ??Cu radionuclide when administered intravenously into a tumor bearing mouse was detected noninvasively with positron emission tomography (PET) around the tumor. These proof-of-principle experiments demonstrate the ability of the QFPPKLTNNSML peptide to deliver payload (radiolabeled phage conjugates) in vivo to sites of ongoing angiogenesis and point to its potential clinical utility in a variety of physiologic and pathologic processes where neovascular growth is a critical component.  相似文献   

18.
19.
Honokiol is an active compound purified from magnolia that has been shown to induce cell differentiation, apoptosis, and anti-angiogenesis effects, as well as an enhancement in tumor growth delay in combination with chemotherapeutic agents in several mouse xenograft models. Our goal was to investigate the radiosensitization effect of honokiol on lung carcinoma. The radiosensitization effect of liposomal honokiol in Lewis lung carcinoma cells (LL/2) was analyzed using an in vitro clonogenic survival assay. For an in vivo study, Lewis lung carcinoma-bearing C57BL/6 mice were treated with either liposomal honokiol at 25 mg/kg or 5 Gy of single tumor radiation, or a combination of both over 12 days of treatment. The tumor growth delay and the survival time were evaluated. In addition, histological analysis of tumor sections was performed to examine changes by detecting the microvessel density and apoptosis in tumor tissues. In the clonogenic survival assay, LL/2 cells treated with IC50 Lipo-HNK for 24 h showed a radiation enhancement ratio of 1.9. After 12 days of combination treatment, the tumor volume decreased 78% and produced an anti-tumor activity 1.3-fold greater than a predicted additive effect of honokiol and radiation alone. This combination treatment also caused an 8.7 day delay in tumor growth. The cell cycle distribution and histological analysis demonstrated that liposomal honokiol has an anti-tumor effect via inducing apoptosis and inhibiting angiogenesis. Liposomal honokiol can enhance tumor cell radiosensitivity in vitro and in vivo, indicating that radiotherapy combined with liposomal honokiol can lead to greater anti-tumor efficacy.  相似文献   

20.
The objective of this study was to evaluate the effects of combination therapy with photodynamic therapy (PDT) and a novel antiangiogenic regimen using monoclonal antibodies against both vascular endothelial growth factor receptors (VEGFR)-1 (MF1) and VEGFR-2 (DC101) on intracranial glioblastoma xenografts in nude mice. Nude mice bearing intracerebral U87 glioblastoma were treated with PDT and the antiangiogenic regimen (MF1 and DC101) either alone or in combination, while those left untreated served as tumor controls. Tumor volume and animal survival time were analyzed to evaluate the outcome of different treatment modalities. In addition, the immunohistochemical expression of VEGF in the brain adjacent to the tumor, von Willebrand factor (vWF), apoptotic, and proliferative markers in the tumor area were examined. PDT or MF1 + DC101 alone significantly reduced the tumor volume and prolonged the survival time of glioma-implanted animals. Combined therapy markedly reduced tumor volume and increased survival time with significantly better outcomes than both monotherapies. Both vWF and VEGF levels significantly increased after PDT while they both significantly decreased after antiangiogenic treatment, compared with no treatment. PDT plus antiangiogenic treatment led to significant decreases in both vWF and VEGF expression, compared with PDT alone. Either PDT or antiangiogenic treatment alone significantly increased tumor cell apoptosis compared with no treatment, while combination therapy resulted in further augmentation of apoptosis. Antiangiogenic treatment with or without PDT significantly decreased tumor cell proliferation, compared with either no treatment or PDT alone. In summary, we demonstrate both significant inhibition of tumor growth and extended survival of mice treated by the combination therapy with PDT and antiangiogenic agents, compared with each single treatment, suggesting that the combination therapy may be a promising strategy to improve clinical outcomes in glioblastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号