首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of 3,3′-dicarbometoxy-2,2′-bipyridine (dcmbpy) complexes with copper(II) and silver(I) cations have been determined using single crystal X-ray-diffraction. The crystals of Cu(dcmbpy)Cl2 are monoclinic, C2/c, a = 16.966(3), b = 18.373(3), c = 13.154(2) Å, β = 126.543(3)°. The crystals of Ag(dcmbpy)NO3 · H2O are also monoclinic, C2/c, a = 16.7547(13), b = 11.0922(9), c = 18.7789(18) Å, β = 100.228(7)°. The results have been compared with the literature data on the complexes of dcmbpy and its precursors: 2,2′-bipyridine (bpy) and 3,3′-dicarboxy-2,2′-bipyridine (dcbpy). Two types of complexes of 3,3′-carboxy derivatives of bpy are distinguished: (1) with metal atom bonded to two N atoms of the same molecule and (2) with metal atom bonded to two N atoms of two different molecules. The Cu(dcmbpy)Cl2 complex belongs to the first type, whereas Ag(dcmbpy)NO3 · H2O belongs to the second type.  相似文献   

2.
3-exo,3′-exo-(1R,1′R)-bicamphor (12) is obtained from 3-exo,3′-exo-(1R,1′R)-bithtiocamphor (3) by condensation with hydrazine hydrate followed by hydrolysis of the resulting dihydropyridazine 11. Deprotonation of 12 with NaH and subsequent treatment with potassium hexacyanoferrate (III) furnishes the 2,2′-dioxo-3,3′-bibornanylidene 13, whilst reduction of 12 with L1AlH4 affords the 3,3′-biisoborneol 16. Further related transformations to various 2,2′-difunctional 3,3′-bibornane derivatives are described, which are could be of interest as chiral ligands  相似文献   

3.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

4.
2,2′-Bis[(4,7-dimethyl-inden-1-yl)methyl]-1,1′-binaphthyl and [2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides have been synthesized from 2,2′-bis(bromomethyl)-1,1′-binaphthylene. 2,2′-Bis(bromomethyl)-1,1′-binaphthylene was alkylated with the lithium salt of 4,7-dimethylindene to yield 2,2′-bis[1-(4,7-dimethyl-indenylmethyl)]-1,1′-binaphthylene (S)-(−)-9. The lithium salt of 9 was metalated with either titanium trichloride followed by oxidation or zirconium tetrachloride to give titanocene dichloride (S)-(+)-10 and zirconocene dichloride 11. The known complexes ansa-[2,2′-bis[(1-indenyl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides were formed and hydrogenated to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides 12 and 14 or to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl]titanium dichloride 13 whose solid state structure was determined by X-ray crystallography. Complex 13 adopts a C1-symmetrical conformation in the solid state, but is conformationally mobile in solution, exhibiting C2-symmetry in its room temperature NMR spectra.  相似文献   

5.
Three spiro[pyrrolidine-2,3′-oxindoles], 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-phenyl-spiro[3H-indole-3,3′-[3H]-pyrrolizine]-2′-carboxylic acid methyl ester (1), 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-phenyl-spiro[3H-indole-3, 3′-[3H]-pyrrolizine] (2) and 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-(4″-chlorophenyl)-spiro[3H-indole-3,3′-[3H]-pyrrolizine] (3) have been synthesized and their 1H, 13C and 15N spectra assigned. The chemical shift assignments are based on Pulsed Field Gradient (PFG) Double Quantum Filter (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H,X (X = 13C and 15N) Heteronuclear Multiple Bond Correlation (HMBC) experiments. The single crystal X-ray structures of 1–3 have been determined. Compounds 1 and 2 crystallized in monoclinic space group C2/c and compound 3 in monoclinic space group P21/c, respectively. Also the ESI-TOF MS data of 1–3 are given.  相似文献   

6.
The coordination of 1,5-bis-(1′-phenyl-3′-methyl-5′-pyrazolone-4′)-1,5-pentanedione (BPMPPD) and 2,2′-bipyridine (bipy) with lanthanide ions in water-alcohol solution has been studied. Binuclear complexes of the types : Ln2(BPMPPD)3(bipy)2·nH2O (n = 2 for Y, n = 4 for Eu, Gd, Dy, Ho, Er, Tm and Yb); Ln2(BPMPPD)3bipy·nH2O (n = 10 for La, n = 3 for Pr, Nd, Sm and Tb) were formed. The compounds were characterized by elemental analysis, molar conductance, IR, UV, 1H NMR spectroscopy, thermogravimetric analysis and fluorescence spectra.  相似文献   

7.
Racemic 1,1′-methylene[(1RS,1′RS,3RS,3′RS,5RS,5′RS)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] ((±)-6) derived from 2,2′-methylenedifuran has been resolved kinetically with Candida cyclindracea lipase-catalysed transesterification giving 1,1′-methylenedi[(1R,1′R,3R,3′R,5R,5′R)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] (−)-6 (30% yield, 98% ee) and 1,1′-methylenedi[(1S,1′S,3S,3′S,5S,5′S)-8-oxabicyclo[3.2.1]oct-6-en-3-yl] diacetate (+)-8, (40% yield, 98% ee). These compounds have been converted into 1,1′-methylenedi[(4S,4′S,6S,6′S)- and (4R,4′R,6R,6′R)-cyclohept-1-en-4,6-diyl] derivatives.  相似文献   

8.
By use of the three-layer diffusion method, reactions of flexible bipyridyl ligands (4,4′-bpp or 3,3′-bpp) with M(II) salts (M = Zn, Cd) and multi-carboxylate ligands resulted in the formation of four interesting d10 metal–organic coordination polymers: [Zn(μ-4,4′-bpp)Br2]n (1), [Zn(μ-4,4′-bpp)(1,2-bdc)]n · nH2O (2), [Zn(μ-3,3′-bpp)(1,3-bdc)]n · nCH3OH · 2nH2O (3) and [Cd(μ-3,3′-bpp)(C4H2O4)]n · 3nH2O (4) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 3,3′-bpp = 2,2 ′-bis(3-pyridylmethyleneoxy)-1,1′-biphenylene; bdc=benzenedicarboxylate, C4H4O4 = fumaric acid). Complex 1 has a 2D sheet structure consisting of two unusual zigzag Zn(II) chains which are nearly perpendicular to each other. Complex 2 is comprised of two-leg ladders, in which [Zn(4,4′-bpp)] chains serve as the side rails and 1,2-bdc ligands serve as the cross rungs. In complex 3, every two 1,3-bdc ligands connect the neighbouring Zn(II)-3,3′-bpp dimetallic rings in η1 coordination modes into an interesting chain structure. Complex 4 consists of an anionic macrocycle-containing cadmium dicarboxylate sheets that are separated by 3,3′-bpp. These d10 metal complexes exhibit high thermal stabilities and strong luminescence efficiencies.  相似文献   

9.
Enantiopure 1,1′-binaphthyl-2,2′-dicarboxylic acids (R)-1 and (S)-1 have been synthesized through the lipase-catalyzed kinetic resolution of the racemic 2,2-bis(hydroxymethyl)-1,1′-binaphthyl (±)-2 and subsequent oxidation of the hydroxymethyl groups.  相似文献   

10.
1,1′-Dialkylferrocene-3,3′-dicarbaldehydes ( 1a–c ) with long alkyl chains such as ethyl, hexyl, and dodecyl groups were prepared in 13–25% yield via three-step reactions. The titanium-induced dicarbonyl-coupling reaction of 1a–c gave poly(1,1′-dialkyl-3,3′-ferrocenylenevi-nylene)s ( 2a–c ) in quantitative yields, which were the molecular weights of 3000–10,000 and highly soluble in chloroform, benzene, and hexane. The electrical conductivity and the third-order nonlinear optical susceptibility for poly(1,1′-dihexyl-3,3′-ferrocenylenevinylene) ( 2b ) were estimated to be 1 × 10?2 S/cm on doping with iodine and 1–4 × 10?12 esu at a wavelength of 1–2.4 μm, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
R. Kikumoto  T. Kobayashi 《Tetrahedron》1966,22(10):3337-3343
Oxindole reacts with p-nitrobenzyl chloride ot give 3-(4′-nitrobenzyl) oxindole, but with o-nitrobenzyl chloride abnormal product, 2′-hydroxy-spiro[2H-indole-2,3′-3′H-indole] (Vb) is produced. The structure of Vb has been elucidated on the basis of the IR, UV and mass spectra, and confirmed by the analogous reactions of 3-methyl-, 4-methyl- and 3,3-dimethyloxindoles with o-nitrobenzyl chloride. Isatin reacts with o-nitrobenzyl chloride to give o-nitrobenzyloxireno[,3]-oxindole (X).  相似文献   

12.
The complexes of 3,3′,5,5′-tetrabromo-2,2′-biphenol (TBBPh) with 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) and triethylamine (TEA) were studied by FTIR spectroscopy. In chloroform and in acetonitrile a proton transfer from TBBPh to N-bases (MTBD, TEA) occurs. In chloroform solution the protonated N-base molecules are hydrogen-bonded to the deprotonated TBBPh molecules, whereas in acetonitrile the complexes dissociate. The intra- as well as intermolecular hydrogen bonds within the chains show large proton polarizability.  相似文献   

13.
Novel Oligodeoxynucleotide analogues containing 3′-C-threo-methylene phosphodiester internucleoside linkages were synthesized on automated DNA-synthesizers using the phosphoramidite approach. The sugar modified phosphoramidite building block 5 was obtained by phosphitylation of 1-(2,3-dideoxy-5-O-(4,4′-dimethoxytrityl)-3-C-hydroxymethyl-β-D-threo-pentofuranosyl)thymine (4) which was synthesized in only three steps from 5′-O-(4,4′-dimethoxytrityl)thymidine (1). The hybridization properties and enzymatic stability of the oligonucleotide analogues were studied by UV experiments. 17-Mers having one or three modifications in the middle or two modifications in each end hybridized to DNA with moderate lowered affinity compared to unmodified 17-mers (ΔTm 1–3°C per modification). Furthermore, the end-modified and all-modified oligonucleotides were stable towards snake venom phosphodiesterase.  相似文献   

14.
The molecular structure of 4,4′-sulfanidyl-bis-thiophenol (C12H10S3) has been determined by gas electron diffraction. Assuming identical geometry and D2h local symmetry for ---SC6H4S--- moieties, the following bond lengths (rg) and bond angles were obtained: C---H = 1.101 ± 0.005, S---H = 1.388 ± 0.019, (C---C)mean = 1.400 ± 0.003, (S---C)mean = 1.778 ± 0.004 Å, Car---S---Car = 103.5 ± 1.3, C---C(S)---C = 120.4 ± 0.3, C(H)---C(H)---H = 119.1 ± 0.9 and C---S---H = 94.6 ± 3.1°. Two ratational forms were found to reproduce the experimental data, characterized by dihedral angles of the benzene rings with respect to the CarSCar plane; 1 = 67.8 ± 2.0°, 2 = 4.5 ± 7.2°, and 1 = 69.4 ± 2.0δ, 2 = −26.6 ± 7.1°. Identical signs of 1 and 2 indicate that the two benzene rings are rotated in the same direction about the respective Scentral---C axes.  相似文献   

15.
The enantiomers of the title compound, the important photochromic material (RS)-1b, have been enriched semipreparatively by liquid chromatography. As a consequence, we were able to determine the barrier of the thermal interconversion (R)-1b(S)-1b via time-dependent polarimetry, amounting to ΔG=85.9 kJ/mol at 22.0°C in d6-DMSO (Table 2). The thermal equilibration of the corresponding merocyanine 2b was monitored in d6-DMSO by time-dependent 1H NMR, resulting in ΔG1=102.8 and ΔG2=92.0 kJ/mol at 22°C (Table 1). This means that, starting from (RS)-1b, the opened isomer 2b is attained by a slow reaction (ΔG1=102.8 kJ/mol, Fig. 4). Therefore, the merocyanine 2b cannot be identified with the intermediate required for the fast process of C(sp3)–O bond cleavage (ΔG=85.9 kJ/mol) upon the above enantiomerization of (RS)-1b. Apparently, these two thermal isomerizations (Fig. 4) are independent of each other. The structure of the unknown intermediate of the interconversion (R)-1b(S)-1b must therefore differ from the known one of merocyanine 2b.
Table 1. Equilibration between spiro compounds (RS)-1 and merocyanines 2 at 22°C, measured by time-dependent UV absorptions[3] for (RS)-1a2a and by time-dependent 1H NMR intensities for the other compounds

Article Outline

1. Introduction
2. Equilibration of the merocyanine 2b with the spiro compound (RS)-1b
3. Preparative separation and characterization of the enantiomers of the spiro compound (RS)-1b
4. Enantiomerization of the spiro compounds (R)- and (S)-1b
5. Discussion of the two different isomerizations investigated
6. Experimental
6.1. General methods
6.2. (±)-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b[43]
6.3. (+)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.4. (−)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.5. 4-Nitro-2-[(E)-2′-(1′′,3′′,3′′-trimethyl-3H′′′-2′′-indoliumyl)-1′-ethenyl]-1-phenolate 2b[19]
Acknowledgements
References

1. Introduction

Many derivatives of 1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1a (Scheme 1) are of interest because of their photochromism.[2] The parent molecule 1a can be transformed photochemically into the merocyanine 2a which isomerizes thermally with a very high rate back to 1a.[3] Therefore, unsubstituted 1a has no practical value with respect to photochromism. This situation changes upon the introduction of a nitro group into the 6-position: the title compound 1b has probably been cited in the literature most often among all photochromic materials. The corresponding merocyanine 2b is obtained by irradiation and reverts to the equilibrium mixture (Scheme 1) consisting predominantly of the spiro compound 1b. The rate of isomerization of 2b is much lower than that of the 2a1a reversal.[3, 4, 5, 6, 7 and 8] Although analogs have now been found which are more stable to light than 1b, the latter has been significant for the development of practical applications of photochromism and continues to be significant for basic research,[2, 9 and 10] e.g. with respect to 1b chemically bonded to another molecule. A further nitro group in the 8-position again changes the properties: only a very small amount of the spiro compound 1c appears in the thermal equilibrium[11 and 12] ( Scheme 1) in dipolar aprotic solvents, which means that the observed photochromism is a reversible one with limited applicability.  相似文献   

16.
Reaction of potassium 3{5}-(3′,4′-dimethoxyphenyl)pyrazolide with 2-bromopyridine in diglyme at 130°C for 3 days followed by an aqueous quench, affords 1-{pyrid-2-yl}-3-{3′,4′-dimethoxyphenyl}pyrazole (L2) in 69% yield after recrystallization from hot hexanes. Complexation of [Cu(NCMe)4]BF4 by 2 molar equivalents of 1-{pyrid-2-yl}-3-{2′,5′-dimethoxyphenyl}pyrazole (L1) or L2 in MeCN at room temperature, followed by concentration and crystallisation with Et2O, gives [Cu(L)2]BF4 L = L1, L2) in good yields. Treatment of AgBF4 with L1 or L2 in MeNO2 similarly gives [Ag(L)2]BF4 L = L1, L2); reaction of AfBF4 with L2 in MeCN gives a product of stoichiometry [Ag(L2)(NCMe)]BF4. The 1H NMR spectra of the [M(L)2]BF4 complexes show peaks arising from a single coordinated environment. The single crystal X-ray structure of [Cu(L1)2]BF4 shows a tetrahedral complex cation with Cu---N = 2.011(8), 2.036(8), 2.039(8), 2.110(8) Å. The CuI centre is close to tetrahedral, the dihedral angle between the least-squares planes formed by the Cu atom and the N donor atoms of the two ligands being 88.3(3)°. Complexation of hydrated Cu(BF4)2 by L2 in MeCN at room temperature yields [Cu(L2)2](BF4)2. The cyclic voltammograms of the three AgI complexes in MeCN/0.1 M Bu4n NPF6 are suggestive of extensive ligand dissociation in this solvent.  相似文献   

17.
Molecular structures of (triphenylphosphine) [1,1′-bis-(methylthio)ferrocene-S,S′,Fe]Pt(BF4)2 (1), (1,5,9-trithia[9]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (2), and (acetonitrile)(1,4,7-trithia[7]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (3) were determined by X-ray analyses. The Pt in 1 and the Pd atom in 2 have a somewhat distorted square-planar geometry including the Fe atom of the ferrocene moiety, while the Pd atom in 3 is coordinated by one equivalent of acetonitrile and takes a distorted tetragonal-pyramidal geometry. The distances of the Fe---M bond (M = Pd, Pt) in 1–3 are 2.851(2), 2.827(2), and 3.0962(8) Å, respectively. Cyclic voltammetry of 1–3 gave no reversible wave, but afforded some information supporting the presence of a dative bond.  相似文献   

18.
A series of Cu(II) complexes of disubstituted 2,2′-bipyridine bearing ammonium groups [Cu(L1−4)2Br]5+ (1–4, L1 = [5,5′-(Me2NHCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+, L3 = [4,4′-(Me2NHCH2)2-bpy]2+, L4 = [4,4′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl) were synthesized, of which complexes 1 and 4 were structurally characterized. Both coordination configurations of Cu(II) ions can be described as distorted trigonal bipyramid. The interaction between all complexes and CT-DNA was evaluated by thermal-denaturation experiments and CD spectroscopy. Results show that the complexes interact with CT-DNA via outside electrostatic interactions and their binding ability follows the order: 1 > 2 > 3 > 4. In the absence of any reducing agents, the cleavage of plasmid pBR322 DNA by these complexes was investigated and the hydrolysis kinetics of DNA was studied in Tris buffer (pH 7.5) at 37 °C. Obtained pseudo-Michaelis–Menten kinetic parameters: 15.0, 13.6, 2.01 and 1.69 h−1 for 1, 2, 3 and 4, respectively, indicate that complexes 1 and 2 exhibit very high DNA cleavage activities. According to their crystal data, the high nuclease activity may be attributed to the strong interaction of the metal moiety and two ammonium groups with phosphate groups of DNA.  相似文献   

19.
In 2-(2′-pyridyl)phenyltellurium(II) bromide (1) the coordination about tellurium may be described as pseudo-trigonal bipyramidal wth bromine (Te---Br = 2.707(11) Å) and nitrogen (Te---N) = 2.236(11) Å) atoms occupying axial positions. The equatorial plane comprises a carbon atome (Te---C = 2.111(6) Å) and two lone pairs of electrons. There are no significant intermolecular interactions between the six independent molecules in the unit cell. Bis[2-2′-pyridyl)phenyltellurium(II) chloride]·p-ethoxy-phenylmercury(II) chloride (2) may be regarded as an “inclusion compound” obtained by replacement of two RTeX (X = Cl or Br) molecules by two p-ethoxyphenylmercury(II) chloride entities. There is approximately linear coordination about mercury (C---Hg---Cl = 179.2°(4), Hg-C = 2.044(14) and Hg---Cl = 2.328(4) Å) and 2-(2′-pyridyl)phenyltellurium(II) chloride, with a structure similar to that of (1) above (Te---N = 2.2366(6), Te---Cl = 2.558(1), Te---C = 2.080(25) Å). There are no significant intermolecular contacts.  相似文献   

20.
The crystal structure of N,N′-bis(β-chloroethyl)-glutaramide (NNCEG) has been determined by X-ray diffraction analysis, as part of a research programme on simple model compounds for synthetic polyamides. It crystallizes in the monoclinic system, space group P21 Z = 2, with A = 4·941, B = 28·123, C = 4·835 Å and β = 113°53′. The structure was solved by the heavy atom method and refined to a final R value of 0·079. Each molecule forms hydrogen bonds along two directions (almost the a and the c directions with an angle close to 60°) giving rise to bidimensional layers (parallel to the ac plane with width b/2). A similar system of hydrogen bonds could be postulated for some nylons with odd number of CH2's between amide groups. The molecular conformation different from an all trans conformation is discussed in terms of the barriers to rotation around each bond considered by several authors. The twinning observed in most of the examined crystals is rationalized in terms of simple symmetry operations on molecular conformations of opposite chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号