首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to develop a method for directly controlling the chemical composition of clay slurries used in preparing ceramic floor and wall tile bodies by wavelength‐dispersive X‐ray fluorescence (WD‐XRF) spectrometry, without the prior need to dry and prepare the samples as fused beads or pellets for WD‐XRF measurement, owing to the importance of knowing the suspension chemical composition in real time for appropriate control of the industrial process. The study was conducted on a wide range of ceramic floor and wall tile bodies, which are used to prepare different suspensions. The influence of suspension viscosity (from 300 to 7000 cp), of suspension solids content (between 66 and 69%), and of the type of body composition (floor or wall tile) on the WD‐XRF measurement was determined. In these viscosity and solid content ranges, no appreciable differences were observed in the WD‐XRF measurement results, indicating that the possibly arising variations in viscosity and solids content in such clay suspensions in industrial practice do not influence the WD‐XRF measurement. In contrast, the type of body composition did influence the WD‐XRF measurement. The developed method is rapid, reproducible, and accurate, which was verified by analysis of the materials using the customary method of WD‐XRF measurement on fused beads. In addition, this method is cheaper and more harmless to the environment; it minimises waste generation, since no sample preparation is required and the plastic sample holders can be reused, thanks to the reusable sample holder system designed at the Instituto de Tecnología Cerámica laboratories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In the course of geochemical characterisations, total sulphur analyses are common practice although a differentiated quantification of sulphur species could provide valuable additional information, particularly when samples from unclear or changing redox environments are investigated. Unfortunately, a likewise simple distinct determination of just sulphide and sulphate already requires considerable efforts as sample dissolution or extra equipment. Two comparatively convenient strategies based on extended routine wavelength dispersive X‐ray fluorescence spectrometry measurements were adapted and optimised for a reliable quantitative sulphur speciation whereupon the matrix influence can be neglected. About 100 synthetic samples with different concentration ratios of sulphides and sulphates have been prepared and analysed using a WD‐XRF spectrometer. The first approach to differentiate between oxidation states and their quantification takes advantage of the Kα1,2 doublet shift. Sulphide lines are located at 2309 eV, sulphate lines at 2310 eV, and mixtures can be quantified by a regression curve of fluorescence energy versus sulphide amount. Secondly, the amount of sulphide can be calculated by a regression curve based on the quotient Kβ′/Kβ of the sulphur peak heights or areas. In contrast to sulphides, sulphates show sulphur Kβ′ satellite peaks, and the intensity of S Kβ′ increases with the increasing sulphate content. However, the applicability of this second method is limited by the lower detection limit of sulphide (10 g kg?1 sulphide in the sample) and interferences with lead (Pb Mβ line). Both approaches are validated by an independent method, Electrothermal Vaporisation Inductively Coupled Plasma Optical Emission Spectrometry, and already employed in investigations of ore‐containing mining dumps in Saxony/Germany. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
《X射线光谱测定》2003,32(2):129-138
A risk assessment study of the air quality in the surrounding of roads covered with slags coming from the non‐ferrous metal industry was performed. A monitoring campaign was carried out at three locations in Flanders by collecting the PM10 fraction and the total suspended particulates (TSP) of the airborne dust particles, entrapping heavy metals, on membrane filters. The heavy metal concentration on the dust filters was determined by wavelength‐dispersive x‐ray fluorescence (WD‐XRF) spectrometry. The XRF calibration curves were set up with filter standards prepared in the laboratory using an aerosol‐generated loading system. The acquired WD‐XRF results were confirmed by inductively coupled plasma atomic emission spectrometric (ICP‐AES) measurements after acid digestion on a selected number of filters. Electron probe microanalysis (EPMA) confirmed that aerosol‐loaded filter standards and dust filters with a concentration level of the analyzed element below 3300 ng cm?2 were homogeneously distributed. Dust filters with higher concentrations, and especially filters loaded with the TSP fraction, reflected an inhomogeneous distribution of the analyzed element on the filter. The WD‐XRF analytical results acquired in the monitoring campaign revealed that the concentration of Pb on the dust filters never exceeded the immission standard (yearly average) of 2000 ng m?3. It can be stated that the impact on human health is limited and can still be reduced by covering the polluted roads with a layer of asphalt. Further evaluation of soil and water samples from the nearby surroundings reveals that the heavy metal content in the slags makes an important contribution to environmental pollution, especially the contamination of groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
This article describes the details of metal concentrations evaluated using wavelength dispersive X‐ray fluorescence (WD‐XRF) spectrometry. A total of 22 elements, Na, Mg, Al, Si, P, S, K, Ti, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb, Ba, Au, and Sn from 16 Ayurvedic medicines were characterized. The method was validated by analyzing the six certified reference materials of soil standards [NIST SRM‐2710, CRM 027‐050 (US‐EPA certified), PS‐1, TILL‐1 and TILL‐4 (Canadian certified reference material, CCRMP) and JSO‐1 (Japanese certified reference material)]. The elemental concentrations in all the standards are found to be within ± 10% of the reported values. Crystalline phases in the individual drug samples were explained by powder X‐ray diffraction (XRD) technique. Qualitative phase identification was done using the ICDD database. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This article describes a methodology for the analysis of minor and trace elements in petroleum cokes by wavelength‐dispersive X‐ray fluorescence (WD‐XRF) spectrometry. The methodology was developed in order to have a rapid and reliable control method of these elements, because they determine coke end uses. There are a number of standard methods of chemical analysis by WD‐XRF or inductively coupled plasma atomic emission spectrometry (ICP‐OES) techniques. However, the standards that use WD‐XRF measurement give detection limits (LD) above 10 mg·kg?1 and only analyse a few elements of interest, whereas the ICP‐OES method requires extensive sample handling and long sample preparation times, with the ensuing errors. In order to improve the method described in the standard ASTM D6376 and reach the LD and quantification limits (LQ) required, the different stages of the process, ranging from sample preparation to measurement conditions: analytical line, detector, crystal, tube power, use of primary beam filters, and measurement time, were optimised. The samples were prepared in the form of pressed pellets, under conditions of high cleanliness of the mills, crushers, presses, and dies, and of the laboratory itself. The following reference materials were used in measurement calibration and validation: SRM 1632c, SRM 2718, SRM 2719, SRM 2685b, AR 2771, AR 2772, SARM 18, SARM 19, and CLB‐1. In addition, a series of materials were analysed by WD‐XRF and ICP‐OES, and the results were compared. The developed methodology, which uses WD‐XRF, is rapid and accurate, and very low LD and measurement uncertainties were obtained for the following elements: Al, Ba, Ca, Cr, Cu, Fe, Ge, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, and Zn. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the chemical characterisation of silicon carbide‐based grinding tools. These are among the most widely used grinding tools in the ceramic sector, and instruments are required that enable the grinding tool quality to be controlled, despite the considerable complexity involved in determining grinding tool chemical composition. They contain components of quite different nature, ranging from the silicon carbide abrasive to the resin binder. To develop the analysis method, grinding tools containing silicon carbide with different grain sizes were selected from different tile polishing stages. To develop the grinding tool characterisation method, the different measurement process steps were studied, from sample preparation, in which different milling methods (each appropriate for the relevant type of test) were used, to the optimisation of the determination of grinding tool components by spectroscopic and elemental analyses. For each technique, different particle sizes were used according to their needs. For elemental analysis, a sample below 150 µm was used, while for the rest of the determinations a sample below 60 µm was used. After milling, the crystalline phases were characterised by X‐ray powder diffraction and quantified using the Rietvel method. The different forms of carbon (organic carbon from the resin, inorganic carbon from the carbonates and carbon from the silicon carbide) were analysed using a series of elemental analyses. The other elements (Si, Al, Fe, Ca, Mg, Na, K, Ti, Mn, P and Cl) were determined by wavelength‐dispersive X‐ray fluorescence spectrometry, preparing the sample in the form of pressed pellets and fused beads. The chemical characterisation method developed was validated with mixtures of reference materials, as there are no reference materials of grinding tools available. This method can be used for quality control of silicon carbide‐based grinding tools. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Portable micro‐X‐ray fluorescence (micro‐XRF) spectrometers mostly utilize a polycapillary X‐ray lens along the excitation channel to collect, propagate and focus down to few tens of micrometers the X‐ray tube radiation. However, the polycapillary X‐ray lens increases the complexity of the quantification of micro‐XRF data because its transmission efficiency is strongly dependent on the lens specifications and the propagated X‐ray energy. This feature results to a significant and not easily predicted modification of the energy distribution of the primary X‐ray tube spectrum. In the present work, we propose a simple calibration procedure of the X‐ray lens transmission efficiency based on the fundamental parameters approach in XRF analysis. This analytical methodology is best suited for compact commercial and portable micro‐XRF spectrometers. The developed calibration procedure is validated through the quantitative analysis of a broad range of samples with archeological relevance such as glasses, historical copper alloys, silver and gold alloys offering an overall accuracy of less than 10%–15%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper carries the results of an evaluation of various materials, which may be used to aid in the release of a fused bead from its mould during a wavelength‐dispersive x‐ray fluorescence (WD‐XRF) measurement. The following bead‐releasing agents were studied: NaI, LiBr, NH4I, and LiI. Each was incorporated in different quantities, as a solid and/or in an aqueous solution, together with a flux, into samples of ceramic raw materials. Release agent interference in the WD‐XRF measurement was analysed, and the optimum quantity of release agent needed to obtain suitable beads for WD‐XRF measurement was determined. The best results were obtained for LiI, which yielded reproducible beads without significant interference in the WD‐XRF measurement when a relatively small quantity (0.11 LiI g/bead) was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Sulfur occurs in a variety of inorganic and organic compounds with oxidation states from ?II up to +VI. Differentiation of these species in solid geochemical samples can be challenging because of oxidation processes during sample preparation by acidic digestion. Applying pressed powder pellets and an analysis by wavelength‐dispersive X‐ray fluorescence minimises reactions with oxidants and water. Main subjects of this work were five inorganic sulfur species, sulfide ?II, elemental sulfur 0, thiosulfate +II, sulfite +IV, and sulfate +VI, and the determination of their fluorescence energies in the sulfur X‐ray spectra. S Kα1,2 and S Kβ1 can be observed for all species, S Kβ′ satellites only for species with coordinated oxygen. The results are in good agreement with previously published data. Yet none of the 38 investigated papers from the past 90 years reported S Kα1,2 of thiosulfate, which was determined as E = 2,309.12 eV in this work apparently for the first time. Binary mixtures of sulfur species are strongly differing in their ability of being quantitatively differentiated, as a reliable quantification requires a sufficient difference of the respective fluorescence energies. Regression equations for each mixture can be used to calculate the ratio of mass fractions of the investigated species from the evaluated fluorescence energy. If boundary conditions are considered, the presented approaches can be applied for analyses of geochemical samples or quality control of technical products. The main advantage of the described methods is the option of implementation to everyday X‐ray fluorescence lab routine without substantial additional effort.  相似文献   

10.
This paper presents a simple 2D method for rapid time resolved quantitative imaging of acoustic waves using refracto-vibrometry. We present the theoretical background, the experimental method and reconstructions of acoustic reflection and interference. We investigate the applicability of the method, in particular the effect of sound radiator geometry. Finite element and experimental reconstructions of the sound fields are analysed. The spatial limitations and accuracy of the method are presented and discussed.  相似文献   

11.
A portable beam stability‐controlled XRF spectrometer developed at the LNS/INFN laboratories at Catania (Italy) was used for the non‐destructive determination of some trace elements (Rb, Sr, Y, Zr and Nb) in fine pottery artefacts. The XRF system and the method developed to control the energy and intensity stability of the excitation beam are briefly discussed. Concentrations of Rb, Sr, Y, Zr and Nb were determined in 50 fine potsherds from the votive deposit of San Francesco in Catania by using a multi‐linear regression method. Additionally, in order to test the homogeneity of the material composing the fine pottery samples, a small portion of a few potsherds was powdered and analysed using the XRF system and the multilinear regression method. A comparison between non‐destructive and destructive approaches is presented and discussed. Finally, quantitative XRF data were compared with those obtained by chemical analysis of the powdered samples. The results allowed the testing of a non‐destructive methodology to be used for the identification and grouping of the different typological classes of fine pottery mainly represented in the San Francesco sanctuary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A confocal set‐up is presented that improves micro‐XRF and XAFS experiments with high‐pressure diamond‐anvil cells (DACs). In this experiment a probing volume is defined by the focus of the incoming synchrotron radiation beam and that of a polycapillary X‐ray half‐lens with a very long working distance, which is placed in front of the fluorescence detector. This set‐up enhances the quality of the fluorescence and XAFS spectra, and thus the sensitivity for detecting elements at low concentrations. It efficiently suppresses signal from outside the sample chamber, which stems from elastic and inelastic scattering of the incoming beam by the diamond anvils as well as from excitation of fluorescence from the body of the DAC.  相似文献   

13.
Lα and Lβ X‐ray fluorescence spectra of a lead metallic sheet were measured using an energy dispersive X‐ray spectrometer by changing the X‐ray tube voltage and the material of the primary filter. The Lα to Lβ intensity ratio changed from Lα: Lβ = 3: 1 at 15 kV to Lα: Lβ = 1: 1 at 50 kV depending on the X‐ray tube voltage and the filter. The scattered X‐ray spectra of an acrylic slab instead of the sample in the sample holder were measured by changing the applied voltage and the material of the primary filter. The calculated values of the Pb Lα/Lβ intensity ratio of the metallic sheet using the Shiraiwa–Fujino formula by inserting the scattered X‐ray spectra of an acrylic plate as incident X‐ray spectra and the fundamental parameters taken from the Elam database were in good agreement with the experimental ones. We conclude that we can obtain an incident X‐ray spectrum approximately by measuring the scattered X‐ray spectrum without measuring the direct incident beam. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
X‐ray fluorescence (XRF) analyses are affected by many matrix and geometrical factors that, generally, are possible to handle in laboratory conditions. However, when in situ analyses are considered, constraints in the measurement conditions make more difficult to handle some factors, such as moisture, affecting the measurement accuracy. Efforts have been made to correct some of the effects by inserting some steps in the sample preparation process. The problem is that each step added in this process, aiming a better precision and accuracy, makes the in situ measurement harder and longer to accomplish, influencing negatively the intrinsic advantages of the in situ measurement. In this work, we propose a method to correct the effect of soil moisture on in situ XRF analysis using low‐energy background. The method demands a simple calibration, after which a long drying procedure is not necessary before measuring the samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Using a miniature X‐ray tube and silicon PiN diode detector, an approach to measuring lead (Pb) in bone phantoms was tested. The X‐ray tube was used to excite L‐line X‐ray fluorescence (L‐XRF) of lead in bone phantoms. The bone phantoms were made from plaster of Paris and dosed with varying quantities of lead. Phantoms were made in two sets with different shapes to model different bone surfaces. One set of bone phantoms was circular in cross‐section (2.5‐cm diameter), the other square in cross‐section (2.2 cm × 2.2 cm). Using an irradiation time of 180 s (real time), five trials were run for each bone phantom. Analysis was performed for both Lα and Lβ lead X‐rays. Based on these calibration trials, (3σ0/slope) minimum detection limits of 7.4 ± 0.3 µg Pb g?1 (circular cross‐section) and 8.6 ± 0.6 µg Pb g?1 (square cross‐section) were determined for the bare bone phantoms. To simulate a more realistic in vivo scenario with soft tissue overlying bone, further trials were performed with a resin material placed between the experimental system and the bone phantom. For the square cross‐section bone phantoms, a layer of resin with a thickness of 1.2 mm was used, and a minimum detection limit of 17 ± 3 µg Pb g?1 determined. For the circular cross‐section phantoms, a layer of resin with an average thickness of 2.7 mm was used. From these, a more realistic minimum detection limit for in vivo applications (43 ± 7 µg Pb g?1) was determined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Occasionally suggested yet rarely performed X‐ray fluorescence (XRF) spectrometry of fluorine seems to fail systematically in yielding reliable quantitative results for rocks and soils. Repeated analyses reveal continuously drifting fluorescence intensities for fluorine, boron and chlorine. Typically, an increase, but in few cases also a decrease, over X‐ray exposure time is observed. For instance, fluorine concentrations in a soil standard appear to increase steadily from below the detection limit in the first run to nearly 850 mg/kg F more than 10 h later in the last. In contrast, cryolite is characterised by drastically decreasing intensities for fluorine. Although fluorescence intensities may be affected by preparation methods, specimen surface conditions and dynamic contamination, it is shown that none of these influencing factors is responsible for the observed trends. In fact, there is evidence that X‐radiation impact mobilises fluorine, boron and chlorine. Diffusion of radiolysis products towards the specimen's surface as well as the kinetics of adsorption and desorption or chemical reactions are believed to control the analyte concentration in the analysed layer decisively. Furthermore, during analysis, the latter is altered by considerable losses of binder or flux – if applicable – thus enhancing XRF intensities of boron and fluorine because of reduced absorption. In any case, signal stability appears to be limited by insufficient sample and specimen stability. It is concluded that for many soil and rock samples, XRF spectrometry is inappropriate to quantify fluorine, although the crucial obstacle is neither the analytical method nor the spectrometer sensu strictu. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Apolipoprotein E and LDL receptor double‐knockout (apoE/LDLR?/?) mice represent a reliable experimental model of atherosclerosis. The aim of the present study was to examine the elemental content of atherosclerotic plaques using synchrotron radiation‐induced micro x‐ray fluorescence (XRF) spectrometry. Numerous essential and trace elements were detected in cross‐sections of aortic roots collected from 6‐month‐old apoE/LDLR?/? mice fed with chow diet. Two‐dimensional maps of the elemental distribution and point recordings were compared with images of consecutive sections stained histologically, allowing precise localization of the analyzed elements in morphologically defined areas of aortic lesion. The sulphur was detected in areas occupied by macrophages and smooth muscle cells. Iron was observed in high concentrations in cardiac and smooth muscle, blood clots and in adjacent coronary vessels. Lower concentrations of iron were seen in the regions of plaques rich in macrophages and lipids. Copper was detected in higher amounts only in cardiac muscle and its concentration in plaques was very low. There was a quite high content of calcium in aortic plaque areas containing lipids and macrophages. Much higher concentrations of calcium were observed in mineral deposits, mostly located in the aortic media. Similar distribution was also characteristic for phosphorus. Zinc was observed in moderately low concentrations in atheromas. Higher content of zinc was seen in smooth musculature, in cardiac muscle and in mineral concretions. The presented results provide a substantial morphological and physicochemical background for further investigations aiming to evaluate pharmacological and dietary treatment of atherosclerosis in an apoE/LDLR?/? mouse model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A semiconductor device, a microSD card, was measured by using two XRF instruments. 2D elemental images were obtained using a micro‐XRF system with a spatial resolution of 10 µm. Elemental distributions of the near‐surface region of the sample were clearly shown. Titanium was observed in the resin constituting the sample. Nickel and gold were observed on a terminal and localization of the sample. Elemental distribution of copper reflected the circuit structure of the measurement area that was in the neighborhood of the sample surface. Moreover, the elemental depth distributions of the sample were measured by using a confocal micro‐XRF instrument. The confocal micro‐XRF instrument was constructed in the laboratory with fine‐focus polycapillary x‐ray optics. The depth resolution of the developed spectrometer was 13.7 µm at an energy of Au Lβ (11.4 keV). The elemental images obtained at near‐surface by confocal micro‐XRF were the same as the results obtained from 2D micro‐XRF. However, different Cu images were obtained at a depth of several tens of micrometers. This indicates that microSD cards consist of a few different Cu‐circuit structure designs. The elemental depth distributions of each circuit structure of the semiconductor device were clearly shown by confocal micro‐XRF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号