首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infinite plane channel flow arising from the impingement of a plane instability wave of finite amplitude on isolated three-dimensional wall roughness is considered. The problem of the transformation of perturbations developing on the roughness in growing modes of secondary instability is solved. This problem describes the development of perturbations leading to the occurrence of a turbulent wedge. Simple relations describing the flow at large distances from the roughness are obtained. From these relations it follows that the angle at the vertex of the turbulent wedge is determined by the amplitude of the impinging wave, while the value of the perturbations generated is proportional to the roughness volume.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 28–38, May–June, 1995.The work was carried out with the financial support of the Russian Foundation for Fundamental Research (project No. 93-013-17613).  相似文献   

2.
Streamwise streaks generated from a pair of oblique waves and secondary instability of the streaks are studied in a two-dimensional bent channel. Nonlinear parabolized stability equations (NPSE) are employed to investigate streamwise streaks and vortices. A pair of oblique waves from linear stability analysis is imposed as initial disturbances. Generation of streamwise streaks and vortices and subsequent development are described in detail. The case of plane channel is also studied to provide comparable data. Through comparison, the effect of bent region is clearly highlighted. Results of parametric studies to examine the effect of Reynolds number, radius of curvature, and bent angle are also given and discussed in detail. Secondary instability analysis for the modified mean flow due to the streamwise streaks is carried out by solving a two-dimensional eigenvalue problem. Several unstable modes which can be classified into fundamental and subharmonic mode of secondary instability are identified. Among several unstable modes, two modes are turned out to be dominant modes. Details on these two modes including generation mechanism, typical pattern, and dependency on wave number and streak amplitude are discussed. It is found that the presence of bent channel can lead to early oblique-mode breakdown via strong growth of the streamwise streaks due to the curved section. Such large amplitude of streaks and its secondary instability eventually could trigger transition even for small amplitude oblique waves at subcritical channel Reynolds numbers.  相似文献   

3.
The flow in the shock layer between a plane wedge and a plane attached shock is considered. The flow two-dimensionality is violated by the presence of a weak heat source in the shock layer. The relation between the mechanical actions of the disturbances singly reflected from the shock and those proceeding from the source and directly incident on the wedge surface is analyzed. The three-dimensional features of the field of the disturbances reflected from the shock are illustrated with reference to several examples.  相似文献   

4.
The classical stability theory for multiphase flows, based on an analysis of one (most unstable) mode, is generalized. A method for studying an algebraic (non-modal) instability of a disperse medium, which consists in examining the energy of linear combinations of three-dimensional modes with given wave vectors, is proposed. An algebraic instability of a dusty-gas flow in a plane channel with a nonuniform particle distribution in the form of two layers arranged symmetrically with respect to the flow axis is investigated. For all possible values of governing parameters, the optimal disturbances of the disperse flow have zero wavenumber in the flow direction, which indicates their banded structure (“streaks”). The presence of dispersed particles in the flow increases the algebraic instability, since the energy of optimal disturbances in the disperse medium exceeds that for the pure-fluid flow. It is found that for a homogeneous particle distribution the increase in the energy of optimal perturbations is proportional to the square of the sum of unity and the particle mass concentration and is almost independent of particle inertia. For a non-uniform distribution of the dispersed phase, the largest increase in the initial energy of disturbances is achieved in the case when the dust layers are located in the middle between the center line of the flow and the walls.  相似文献   

5.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

6.
The development of localized disturbances in parallel shear flows is reviewed. The inviscid case is considered, first for a general velocity profile and then in the special case of plane Couette flow so as to bring out the key asymptotic results in an explicit form. In this context, the distinctive differences between the wave-packet associated with the asymptotic behavior of eigenmodes and the non-dispersive (inviscid) continuous spectrum is highlighted. The largest growth is found for three-dimensional disturbances and occurs in the normal vorticity component. It is due to an algebraic instability associated with the lift-up effect. Comparison is also made between the analytical results and some numerical calculations.Next the viscous case is treated, where the complete solution to the initial value problem is presented for bounded flows using eigenfunction expansions. The asymptotic, wave-packet type behaviour is analyzed using the method of steepest descent and kinematic wave theory. For short times, on the other hand, transient growth can be large, particularly for three-dimensional disturbances. This growth is associated with cancelation of non-orthogonal modes and is the viscous equivalent of the algebraic instability. The maximum transient growth possible to obtain from this mechanism is also presented, the so called optimal growth.Lastly the application of the dynamics of three dimensional disturbances in modeling of coherent structures in turbulent flows is discussed.  相似文献   

7.
《Fluid Dynamics Research》2007,39(5):389-412
We investigate the linear and nonlinear instability of a planar liquid sheet with surrounding fluids between two parallel plane solid walls. Linear analysis shows that the maximum temporal growth rate and unstable wave number region of disturbances increase for the dilational and sinuous modes when the gap between the sheet and the wall decreases. The walls have more influence on the instability when the density ratio of the surrounding fluid to the sheet and/or the Weber number decrease. On the other hand, nonlinear analysis is performed by means of the discrete vortex method, where double vortex rows and their mirror images are placed so as to satisfy the boundary condition on the walls. Numerical results show that the walls enhance nonlinearity, which causes deformation and distortion of the sheet, whereas the nonlinearity diminishes linear growth rates except for long dilational disturbances. In particular, as the walls are placed more closely to the sheet, local sheet thinning becomes more pronounced in the long dilational mode, while the dilational mode is more strongly induced from the sinuous mode through monotonic or periodic energy exchanges between the two modes.  相似文献   

8.
Secondary plane-parallel motion in a vertical layer between isothermal planes heated to different temperatures is unstable at low and moderate values of the Prandtl number with respect to monotonically increasing disturbances [1]. The results of numerical experiments carried out by the method of networks [2, 3] indicate that this instability leads to the development of stationary secondary motions; the secondary motions have also been investigated in [4] by averaging the original equations. In the present paper we consider plane and three-dimensional stationary spatially periodic secondary motions near the threshold at which the motions develop. We make use of the methods of branching theory which were used earlier for the investigation of isothermal flows [5–9]. We determine the regions of “soft∝ and “hard∝ instability of the plane-parallel motion and the region of stability of the secondary motions. We give the results obtained by calculation of the basic characteristics of the secondary motions.  相似文献   

9.
The development of three-dimensional wave packets artificially introduced into a boundary layer has been experimentally investigated. The measurements were made by the hot-wire anemometer method in the boundary layer on a flat plate at a Mach number M = 4. The artificial disturbances were introduced into the boundary layer by means of an electric discharge. A Fourier analysis of the data made it possible to obtain the wave characteristics of the plane waves. The composition of the disturbances was analyzed and those most dangerous from the instability standpoint were identified. The data obtained are compared with the results of experiments carried out at M = 2. The differences in the data are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 54–58, November–December, 1990.  相似文献   

10.
The laminar-turbulent transition zone is investigated for a broad class of jet flows. The problem is considered in terms of the inviscid model. The solution of the initial-boundary value problem for three-dimensional unsteady Euler equations is found by the Bubnov-Galerkin method using the generalized Rayleigh approach [1–4]. The occurrence, subsequent nonlinear evolution and interaction of two-dimensional wave disturbances are studied, together with their secondary instability with respect to three-dimensional disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 8–19, September–October, 1985.  相似文献   

11.
The linear development of controlled disturbances in the three-dimensional supersonic boundary layer on a swept model wing with a sharp leading edge is experimentally investigated at the Mach number 2. The spatial-temporal and spectral-wave characteristics of the wave train of unstable disturbances are obtained. The asymmetry of these characteristics, due to the secondary flow in the three-dimensional boundary layer, is confirmed.  相似文献   

12.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

13.
The plane-parallel flow past an infinitely long circular cylinder becomes three-dimensional starting with Reynolds numbers Re ≈ 190. The corresponding instability mode is called mode A. When Re ≈ 260, vortex structures with a smaller cross scale are formed in the wake as a result of a secondary three-dimensional instability (mode B). The transition to three-dimensionality for a short cylinder bounded by planes is considered. The length of the cylinder is chosen to eliminate the unstable perturbations of mode A. Two instability modes similar to modes A and B modified under the effect of the bounding lateral planes are found. The problems of three-dimensional flow are numerically solved using the Navier-Stokes equations.  相似文献   

14.
The stability of plane, periodic solutions of the two-dimensional nonlinear Schrödinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik [8], Saffman and Yuen [4] and Ablowitz and Segur [1] on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities]may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations.  相似文献   

15.
An aircraft travelling at supersonic speeds close to the ground generates a bow wave which is reflected off the ground surface. If a valley is traversed a complex reflection pattern will be generated. Similar patterns will evolve with a plane wave traversing a depression on a surface or structure. To simulate the process a planar shock wave, generated in a shock tube, is moved over several notched wedge configurations. Schlieren photographs were produced to assist in identifying the resulting complex three-dimensional wave structures and then verified and extended by three- dimensional computations. The valley geometries investigated are rectangular, triangular, parabolic and conical with a number of valley floor inclinations. The main features are extracted in surface models to demonstrate the complexity of the flow, and in particular in the case where the reflection is regular on the ground plane and Mach reflection in the valley.   相似文献   

16.
In this paper, three-dimensional viscoelastic Taylor-Couette instability between concentric rotating cylinders is studied numerically. The aim is to investigate and provide additional insight about the formation of time-dependent secondary flows in viscoelastic fluids between rotating cylinders. Here, the Giesekus model is used as the constitutive equation. The governing equations are solved using the finite volume method (FVM) and the PISO algorithm is employed for pressure correction. The effects of elasticity number, viscosity ratio, and mobility factor on various instability modes (especially high order ones) are investigated numerically and the origin of Taylor-Couette instability in Giesekus fluids is studied using the order of magnitude technique. The created instability is simulated for large values of fluid elasticity and high orders of nonlinearity. Also, the effect of elastic properties of fluid on the time-dependent secondary flows such as wave family and traveling wave and also on the critical conditions are studied in detail.  相似文献   

17.
A method for rapidly damping instability waves is proposed as a means of actively controlling a perturbed gas boundary layer flow. The method is based on the use of an active body surface segment which reacts to an instantaneous local pressure variation by producing a proportional local wall displacement normal to the surface with a constant time lag calculated to result in the optimal suppression of unstable disturbances. It is shown that in the one-frequency case the wave number spectrum of the optimal control law contains multiple eigenvalues. The effectiveness of the method is demonstrated over a wide range of variation of the instability wave frequencies and directions. The propagation of an instability wave over an active segment of finite length is calculated using an integral-equation method based on solving the problem of boundary layer flow receptivity to surface vibration. Explicit formulas describing the process of scattering of the instability wave into stable modes at the junction point of the rigid and active surfaces are obtained using the Fourier method and the integral Cauchy theorem.  相似文献   

18.
Interactions of disturbances in a hypersonic boundary layer on a porous surface are considered within the framework of the weakly nonlinear stability theory. Acoustic and vortex waves in resonant three-wave systems are found to interact in the weak redistribution mode, which leads to weak decay of the acoustic component and weak amplification of the vortex component. Three-dimensional vortex waves are demonstrated to interact more intensively than two-dimensional waves. The feature responsible for attenuation of nonlinearity is the presence of a porous coating on the surface, which absorbs acoustic disturbances and amplifies vortex disturbances at high Mach numbers. Vanishing of the pumping wave, which corresponds to a plane acoustic wave on a solid surface, is found to assist in increasing the length of the regions of linear growth of disturbances and the laminar flow regime. In this case, the low-frequency spectrum of vortex modes can be filled owing to nonlinear processes that occur in vortex triplets.  相似文献   

19.
本文分析了薄膜沿加热平板下落的稳定性。在时间模式下,发现流动的不稳定性是由表面波不稳定和加毛细不稳定构成的,同时当流体的热扩散越大以及界面热量损失越小时,热毛细不稳定越剧烈,在时空模式下,流动随着Marangoni数的增大。流动有可能从对流不稳定过渡到绝对不稳定,这一结论尚待实验验证。  相似文献   

20.
The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelastic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymptotic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers. Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic jet instability behavior substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号