首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dyeing of cationized cotton fabric with Solfix E using colouring matter extracted from Cochineal dye has been studied using both conventional and ultrasonic techniques. Factors affecting dye extraction such as ultrasound power, particle size, extraction temperature and time were studied. The results indicated that the extraction by ultrasound at 300 W was more effective at lower temperature and time than conventional extraction. The effect of various factors of dye bath such as pH, salt concentration, ultrasound power, dyeing time and temperature were investigated. The colour strength values obtained were found to be higher with ultrasound than with conventional techniques. The results of fastness properties of the dyed fabrics were fair to good. The scanning electron microscope (SEM) images of the morphological and X-ray analyzes were measured for cationized cotton fabrics dyed with both conventional and ultrasound methods, thus showing the sonicator efficiency.  相似文献   

2.
Merdan N  Akalin M  Kocak D  Usta I 《Ultrasonics》2004,42(1-9):165-168
Although ultrasonic energy is widely used cleaning and degreasing of parts and assemblies in automotive and other industries, the use of ultrasonic energy in an industrial scale for textile washing is very new. This is due to the complexity of controlling the combination of chemical and mechanical effects, whereas with degreasing of machine parts only the mechanical effects is applied. The use of ultrasonic energy in dyeing PA/Lycra fabrics with reactive dyes has been studied spectrophotometrically in this work. PA/Lycra (85/15) blends have been dyed using conventional and ultrasonic dyeing techniques with three reactive dyes containing different chromophore and reactive groups. The dyeing carried out conventionally and by the use of ultrasonic techniques. The results were compared in terms of percentage exhaustion; total dye transferred to the washing bath after dyeing and the fastness properties.  相似文献   

3.
This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase–hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase–hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase–hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase–hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.  相似文献   

4.
The N-amino phenyl maleimide (N-APhM) and N-amino phenyl 2,3 dimethyl maleimide (N-APhDiMeM) derivatives were prepared by the condensation of phenyl hydrazine with maleic anhydride and 2,3 dimethyl maleic anhydride respectively. (13)C NMR spectroscopy proved the formation of the symmetric amino maleimide structure and not the pyridazinone or aminoisomaleimides. The copolymerization of acrylonitrile with the (N-APhM) and (N-APhDiMeM) were prepared using ultrasound. The thermal behavior of the prepared copolymers, under nitrogen atmosphere, was investigated using thermogravimetry (TG) techniques. The dyeing of the copolymers formed has been studied using both conventional and ultrasonic techniques. The effect of dye bath pH, ultrasonic power, dyeing time and temperature were studied. Color strength values obtained were found to be higher using ultrasound than with conventional heating. The results of fastness properties of the dyed copolymers were also studied.  相似文献   

5.
We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60 min for conventional dyeing to 30 min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time.  相似文献   

6.
Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.  相似文献   

7.
Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.  相似文献   

8.
The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents.Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis.Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60 °C, a temperature process strongly lower than 98 °C, currently used in industry, which damages the mechanical properties of the fibers.  相似文献   

9.
Studies on the use of power ultrasound in leather dyeing   总被引:12,自引:0,他引:12  
Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal-complex dyes having bigger aggregate size compared to less difficult dyeing conditions.  相似文献   

10.
Deshuai Sun  Qingjie Guo  Xin Liu 《Ultrasonics》2010,50(4-5):441-446
The acceleration efficiency of ultrasound was investigated by different application of ultrasound during dyeing process in an ultrasound cleaner. Actual energy dissipated into the dyeing bath was measured to ensure the formation of ultrasound cavatiation. The experimental findings showed ultrasound pretreatment could improve slightly the dye exhaustion and fixation, but failed to improve fastness of dyed fabrics. Obvious enhancement effects on dye exhaustion and fixation were achieved in continuous and intermittent ultrasound dyeing processes, and slight improvement effects on some fastness properties of fabrics dyed in ultrasound fields were observed. A comparison of the efficiencies in two ultrasound dyeing processes revealed the dyeing process in intermittent ultrasound field would benefit to making full use of ultrasound energy.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(4):1477-1481
The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C.The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra–Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively.Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time.  相似文献   

12.
研究了染色温度对叶绿素铜钠盐上染蚕丝织物的上染速率、染色织物颜色特征值及色牢度的影响。结果表明,在40—90℃染色温度范围内,当温度为70℃时,叶绿素铜钠盐上染蚕丝初期上染速率、平衡上染率均最大,染色蚕丝织物最为深绿;叶绿素铜钠盐染色蚕丝织物具有很好的耐洗和耐摩擦牢度(4级及以上),但其耐日光色牢度较差(2—3级);提高染色温度、延长染色时间对染色蚕丝织物的耐日光色牢度没有明显影响。叶绿素铜钠盐染色蚕丝织物适宜制作高档的居家服饰。  相似文献   

13.
Ultrasonics has the potential to reduce the cost and environmental impact of textile processing. This work investigates the effects of ultrasonic irradiation during wool scouring on fibre surface morphologies, fibre mechanical properties, and fibre dyeing abilities. A range of ultrasonic frequencies were used in the scouring bath to examine the forms of fibre cuticle damage. It is observed that wool fibres underwent ultrasonic irradiation at a low frequency have severe modifications of the fibre surface structure. Despite some visible disruptions to the fibre scale structure however, ultrasonic irradiation has shown a negligible impact on the fibre mechanical properties, especially bending abrasion resistance which depends largely on the fibre surface conditions, and is responsible for the handle and pilling propensity of the resultant fabrics. Dyeing abilities were investigated on wool samples using commercially available acid dye and reactive dye. It is found that ultrasonically scoured wool has a quicker dye uptake in the early stage of low temperature dyeing for both acid dye and reactive dye, than the conventionally scoured wool.  相似文献   

14.
There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 °C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol–water with 80 W ultrasonic power for 3 h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80 W as compared to MS process both using 1:1 ethanol–water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from reflectance measurement. Therefore, the present study clearly offers efficient extraction methodology from natural dye resources such as beetroot with ultrasound even dispensing with external heating. Thereby, also making eco-friendly non-toxic dyeing of fibrous substances a potential viable option.  相似文献   

15.
Effects of ultrasonic energy on the wash fastness of reactive dyes   总被引:10,自引:0,他引:10  
Akalin M  Merdan N  Kocak D  Usta I 《Ultrasonics》2004,42(1-9):161-164
The field of ultrasonic is still making strides towards perfection, but already many applications of ultrasonic energy have been found in science and technology. There is also a field called sonochemistry where ultrasonic energy is used to create some chemical and mechanical effects on matter immersed or solved in liquids. It was presumed that ultrasonic textile washing could be a competitive alternative to conventional textile washing techniques; and as such the following experiments were conducted. In this study, the effects of ultrasonic energy on the wash fastness of reactive dyes, which have three different reactive groups, were investigated. After dyeing with the conventional method, the samples were applied with three types of washing processes simultaneously (conventional, ultrasonic probe and ultrasonic bath) and comparisons were made. Three different fixing agents were used in the washing processes. Colourfastness, staining fastness, magnitude of total colour difference (DeltaE) and lightness difference of the colour (DeltaL) values of dyed samples were measured.  相似文献   

16.
A number of organic natural dyestuffs used in dyeing in ancient times, i.e. indigo, madder, turmeric, henna, cochineal, saffron and safflower, have been used to colour Egyptian fabrics based on linen. Their physicochemical properties have been evaluated on thermally aged linen samples. The aged dyed linen samples were thoroughly examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile strength and elongation measurements. It was found that, in the molecular level, dyes interact mainly with the cellulose compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Tensile strength is positively related to the dye treatment while elongation depends specifically on the type of the dye used. Results converge that the dyed textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration.  相似文献   

17.
从早期纺织品保护的视角出发,通过对这一行业国内外大量文献资料梳理分析,对比了织物的常规系统分析方法,结合现代的科学技术方法,对早期纺织品的面料种类、所用染料种类以及染色工艺进行测定分析。面对目前服饰博物馆清末传世朱红女袄保藏面临的严峻考验,运用傅里叶变换红外光谱仪鉴定该纺织品的材质,以萃取法提取纺织品上的染料,用反射分光色度仪对提取前后的纺织品进行表面颜色分析,并用高压液相色谱和质谱对色素进行结构分析,尝试确定分析早期纺织品上染料的结构成分和上染方式。将现代分析技术(液质联用)和理念(色度学)融入传统研究中,使用客观科学技术获取更多有效数据和信息,佐证以主观目鉴方法得出的结论,弥补这一研究领域的空白,使对于传统服饰的研究更具深度。与传统的纺织品鉴别方法横向比较,现代的科学技术方法获得的相关信息更加详尽可靠。有利于根据不同染料特性和不同纤维种类特性提出具有针对性的保藏措施,对博物馆馆藏纺织品的保护和保存具有重要的意义。采用傅里叶变换红外仪对样品的面料进行简单分析,通过不同的特殊特征峰确定了样品为蚕丝面料。该研究建立了一种普遍适用的染料提取方法,采用丙酮、乙腈、吡啶:水(1∶1)、N,N-二甲基甲酰胺、0.1%乙二胺四乙酸水溶液/N,N-二甲基甲酰胺(1∶1)、甲醇六种不同的溶剂提取样品上的染料,采用反射分光光度仪对样品表面剥色前后的颜色进行色度测量分析。结果表明,吡啶的水溶液对染料具有最佳的提取效果;发现提取染料时加入少量乙二胺四乙酸,会提高剥色效率,即染色方式可能是媒染法,因为乙二胺四乙酸可以破坏染料和媒染金属离子间的络合作用。从染料提取前后织物的颜色变化可以推断样品的颜色可能是由染料拼色得到,利用液质联用技术(LC-MS)对提取的染料进行检测,根据染料上染方式和分子量推测分析,纺织品上染料可能含有小檗碱。经过标准小檗碱染料进行验证,进一步证明了染色纺织品上其中一种染料为小檗碱。  相似文献   

18.
In this work Raman spectroscopic techniques have been utilized to characterize the vibrational spectral features of orchil dyed wool samples. Specifically, it is noted by surface enhanced Raman spectroscopy that wool dyed purple with two historically used orchil species (Roccella tinctoria and Lasallia pustulata) show spectral differences possibly owing to their specific dye‐precursor constituents. The additional natural dyestuff woad (Isatis tinctoria L.) overdyeing the R. tinctoria orchil dyed wool is a further challenge when distinguishing the mixed dye components given by the co‐adsorption of the dyestuffs as permitted by the selection rules of surface enhanced Raman spectroscopy. Furthermore, the effects of dilution of the L. pustulata species in its spectral detection have been assessed along with the evaluation of subsequent lichen extract boiling before dyeing which resulted in the detection of a degraded form of the orchil dye. Proof of concept included the surface enhanced Raman spectroscopy (SERS) investigation of a purple dyed tapestry (XVI century) which permitted an aged orchil dye to be determined. This contribution utilizes SERS as a fast, reproducible and specific method for both orchil dye detection and alteration induced by degradation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4–5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.  相似文献   

20.
The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM).PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号