首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Su Y  Yang L  Xu Y  Wang Z  Weng S  Yan C  Wang D  Wu J 《Inorganic chemistry》2007,46(14):5508-5517
It has long been known that metal ions and saccharides are involved in many biochemical processes. In this paper, metal nitrates were used as reactants to detect the coordination structures of the hydroxyl groups of galactitol in different environments. Three novel crystal structures and FT-IR spectra of metal nitrate-galactitol complexes of La(NO3)3.C6H14O6.(4)H2O, 2Ca(NO3)2.C6H14O6.H2O, and Sr(NO3)2.C6H14O6 were examined in an effort to clarify the structural factors that control metal ion interactions with saccharides in aqueous and biological systems. The coordination structures of galactitol with alkaline earth and lanthanide nitrates in the solid state were compared using FT-IR, Raman, and X-ray diffraction techniques to extensively discuss the coordination rules of different kinds of metal ions. Results provided a model of the coordination sites found in sugars and showed that the introduction of NO3- made the coordination modes of galactitol more diverse and complex than those of the corresponding chloride complexes. Specifically, new coordination modes of galactitol and complicated topology networks were found in 2Ca(NO3)2.C6H14O6.H2O and Sr(NO3)2.C6H14O6. FT-IR results are consistent with the crystal structures and thus provide the possibility of using the similarity of IR spectra to speculate about unknown structures when the compounds are difficult to prepare as single crystals.  相似文献   

2.
Coordination compounds based on imidazole and benzimidazole substituted nitronyl nitroxide radicals with transition metal ions and trivalent lanthanide ions are described from the perspective of their magnetic properties.For the transition metal compounds the crystal structures show various metal-nitroxide dimensionalities including mononuclear (0D), one-dimensional (1D) and two-dimensional (2D) complexes. The mononuclear complexes were isolated with most metal ions of the first transition series. One copper(II) complex shows a copper(II)-radical ferromagnetic coupling (J = +75 cm−1) while for the other mononuclear compounds, mainly with manganese(II), the metal-radical interactions are antiferromagnetic. The one-dimensional and two-dimensional complexes are manganese(II) compounds which show canting effects leading to weak ferromagnetism.For the trivalent lanthanide ions [La(III), Gd(III) and Eu(III)], three series of mononuclear complexes were obtained in which the metal center is bound to four, two or one nitroxide radicals depending on the counter ions and ancillary ligands. Unexpectedly, in most gadolinium(III) complexes, the Gd(III)-radical interactions were found to be antiferromagnetic in contradiction with other foundings and previous theoretical models. In support to the magnetic studies, the optical properties of the lantanide complexes have also been investigated and are briefly described.  相似文献   

3.
This report covers initial studies in the coaggregation of nickel (Ni2+) and lanthanide (Ln3+) metal ions to form complexes with interesting structural and magnetic properties. The tripodal amine phenol ligand H3tam (1,1,1-tris(((2-hydroxybenzyl)amino)methyl)ethane) is shown to be particularly accommodating with respect to the geometric constraints of both transition and lanthanide metal ions, forming isolable complexes with both of these ion types. In the solid-state structure of [Ni(H2tam)(CH3CN)]PF6.2.5CH3CN.0.5CH3OH (1), the Ni(II) center has a distorted octahedral geometry, with an N3O2 donor set from the [H2tam]- ligand and a coordinated solvent (acetonitrile) occupying the sixth site. The reaction of stoichiometric amounts of H3tam with the Ni(II) ion in the presence of lanthanide(III) ions provides [LnNi2(tam)2]+ cationic complexes which contain coaggregated metal ions. These complexes are isolable and have been characterized by a variety of analytical techniques, with mass spectrometry proving to be particularly diagnostic. The solid-state structures of [LaNi2(tam)2(CH3OH)1/2(CH3CH2OH)1/2(H2O)]ClO4.0.5CH3OH.0.5CH3CH2OH.4H2O (2), [DyNi2(tam)2(CH3OH)(H2O)]ClO4.CH3OH. H2O(6), and [YbNi2(tam)2(H2O)]ClO4.2.58H2O(9) have been determined. Each complex contains two octahedral Ni(II) ions, each of which is encapsulated by the ligand tam3- in an N3O3 coordination sphere; each [Ni(tam)]-unit caps the lanthanide(III) ion via bridging phenoxy oxygen donor atoms. In 2, La3+ is eight-coordinated, while in 6, Dy(III) is seven- (to "weakly eight-") coordinated, and Yb(III) in 9 has a six-coordination environment. The complexes are symmetrically different, 2 possessing C2 symmetry and 6 and 9 having C1 symmetry. Magnetic studies of 2, 6, and 9 indicate that antiferromagnetic exchange coupling between the Ni(II) and Ln(III) ions increases with decreasing ionic radius of Ln(III).  相似文献   

4.
Three new coordination polymers, [RE(5-Nip)(5-HNip)(H2O)2)] · 2H2O (RE = Y (I), Ho (II), and Er (III)) were synthesized by hydrothermal reactions of lanthanide nitrates with 5-nitroisophthalic acid (H2Nip) and characterized by IR spectra, elemental analysis, and single-crystal X-ray diffraction. X-ray diffraction studies suggest that all the two-dimensional 5-nitroisophthalic complexes crystallize in the P space group and are isomorphic. The two-dimensional layer-like structures are constructed by the lanthanide ions bridged by 5-Nip2− ligands, and the layers further packed into 3D complexes through hydrogen bonds and two kinds of π-π stacking interactions. These complexes exhibit high stabilities up to 465 (1), 518 (2), and 528°C (3), respectively. According to the effective ionic radii of eight-coordinate lanthanide, Y(III) should be arranged before Ho(III) and Er(III), and we obtain a series of lines (except for the RE-OW bonds) in the corresponding RE-O against their ionic radii. In these complexes the yttrium complex could be located before the other two complexes according to the position of its ionic radius, and the ionic radii become a key factor in the formation of these complexes. The text was submitted by the authors in English.  相似文献   

5.
A bi-phosphonate ligand tetraethyl-(2,3,5,6-tetramethyl-1,4-phenylene) bis(methylene)diphosphonate has been designed and synthesized. The bi-phosphonate as a bridging ligand reacts with lanthanide nitrates forming four different types of 1D coordination complexes: ribbon polymer (type I), semi-ribbon polymer (type II), zigzag polymer (type III), and dinuclear-triligand short chain (type IV), which changed according to the decrease of the radius of the lanthanide. They have been characterized by IR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. The photophysical properties of Sm(3+), Eu(3+), Tb(3+) and Dy(3+) complexes at room temperature were also investigated. They exhibit strong fluorescence by excitation of the Ln(3+) ion absorption bands and the quantum yield values of Eu(3+) and Tb(3+) complexes are no less than 20%.  相似文献   

6.
Three new polyamidoximes (PAO) having appropriate functionalities to bind transition metal ions were prepared. The polymers were obtained by the reaction of dichlorooximino ethane with the corresponding diamine. Characterization and crosslinking of PAOs via coordination with transition metal ions such as Ni(II), Co(II), Cu(II), and UO2(II) are presented. The crosslinked polymer complexes exhibit good thermal stability. It was also found that both square planar and tetrahedral coordination structures are present in the crosslinked polymers.  相似文献   

7.
A novel bis-beta-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.  相似文献   

8.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

9.
The Ni(II), Pd(II) and Pt(II) complexes of 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine (trimethoprim) have been synthesized and characterized by elemental analysis, electronic and IR spectroscopy, and magnetic susceptibility measurements. The single-crystal X-ray structure of the Ni(II) complex is reported. Ni(II) is coordinated to the N(1) atoms of two trimethoprim molecules that act as monodentates. Octahedral coordination around the nickel atom is completed by coordination to two molecules of methanol and two acetate ions. Pd(II) and Pt(II) complexes are square planar and the metal ions coordinate one molecule of trimethoprim, two chloride ions and a molecule of water.  相似文献   

10.
The sparkle/AM1 model for the quantum chemical prediction of coordination polyhedron crystallographic geometries from isolated lanthanide complex ion calculations, defined recently for Eu(III), Gd(III), and Tb(III) (Inorg. Chem. 2005, 44, 3299) is now extended to La(III) and Lu(III). Thus, for each of the metal ions we chose a training set of 15 complexes that possess various representative ligands of high crystallographic quality (R factor < 0.05 Angstroms) and oxygen and/or nitrogen as coordinating atoms. In the validation procedure we used a set of 60 more La(III) coordination compound structures, as well as 15 more Lu(III) coordination compound structures, all of high crystallographic quality. For both the 75 La(III) compounds and the 30 Lu(III) compounds, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the metal ions and the ligand atoms of the first sphere of coordination, is 0.08 Angstroms, thus comparable to the accuracy normally achievable by present day ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

11.
Works concerning the application of nonradiative transfer of electronic excitation energy to investigation into nanostructures of lanthanide complexes in aqueous solutions are surveyed. The effect of the formation of nanosized structures on the quenching of energy donors Ln(III) ions by acceptor ions in concentrated chloride solutions of structuring ions (Li(I), Ca(II)) was discussed. The columinescence phenomenon observed in aqueous solutions of lanthanide chelates was considered. It was shown that the enhancement of luminescence Eu(III) and Tb(III) complexes in water in the presence of excess β-diketones with an admixture of other Ln(III) ions, primarily Gd(III), (columinescence) is due to sensitization via energy transfer over triplet levels of the ligands in the nanostructures formed under these conditions and to the weakening of deactivation of excited luminescent ions by the formation of nanostructures. The influence of the solution preparation procedure on the formation of nanostructures of chelates with different lanthanide ions was revealed, which manifest itself as a variation in the enhancement and quenching of luminescence in the presence of ions from the cerium and yttrium subgroups. Possible applications of the columinescence phenomenon to chemical and medical analysis are briefly discussed.  相似文献   

12.
Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.  相似文献   

13.
The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.  相似文献   

14.
The complexation between lanthanide metal ions like Nd(III), Tb(III), and Er(III) with Glimepiride produces 1: 1 molar ratio (metal: Glimepiride) monodentate complexes of general formula: [M(GMP)(H2O)4]Cl3·xH2O, where: M = Nd, Tb, and Er, x = 1, 10, respectively. The structures of obtained compounds were assigned by IR, 1H NMR and UV/Vis spectra. Themogravimetric analysis and kinetic thermodynamic parameters have proved the thermal stability of Glimepiride complexes. Obtained lanthanide complexes showed significant effect against some bacteria and fungi.  相似文献   

15.
Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.  相似文献   

16.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

17.
The nanoporous coordination polymer [Cu(pyrimidin-2-olate-N1,N3)2]n (1C) of the sodalite zeotype sorbs a variety of metal nitrates [M(NO3)m, M = Na+, K+, Rb+, Tl+, Ca2+, Sr2+, Ba2+, Pb2+, La3+, Nd3+, Gd3+, Er3+] from H2O/MeOH solutions, with a concomitant structural change to a layered [Cu(pyrimidin-2-olate-N1,N3)2]n.[M(NO3)m]n/2 (MNO3@1L) coordination framework. Single-crystal X-ray diffraction analyses revealed that the layers are based on Cu4(pyrimidin-2-olate-N1,N3)4 square grids of copper(II) ions bridged by N1,N3 exobidentate ligands, displaying a structural motif of the metallacalix[4]arene type in pinched cone conformation. The interlayer space is occupied by the guest metal nitrates, each metal being coordinated by (at least) the four oxygen atoms of a metallacalix[4]arene. Magnetic measurements on the MNO3@1L series denoted a weak ferromagnetic ordering taking place below the Néel temperatures (typically close to 35 K), arising from spin-canting phenomena of the antiferromagnetically coupled copper centers. When M = Nd3+, Gd3+, or Er3+, additional magnetic ordering is observed at lower temperatures, which, on the basis of static and dynamic magnetic susceptibility measurements, can be attributed to copper- lanthanide interactions.  相似文献   

18.
《Comptes Rendus Chimie》2016,19(8):909-920
The interactions of methylxanthine bases with metal ions are of major biological interest and are important in bioinorganic chemistry. One of these bases is 8-chlorotheophylline (Ctp), which exhibits high stimulant action. Here, the metal complexation reactions of Ctp with Cr(III), Mn(II), Co(II), Ni(II), and Cu(II) ions were investigated, in a 1:2 molar ratio and in basic media. All of the prepared complexes were confirmed using elemental analysis, magnetic moment measurements, molar conductance, thermal analysis, and UV–Vis., IR, and Raman spectroscopies. Spectroscopic results revealed direct cation interactions for all of the metal ions via the deprotonated N7 atom of Ctp. The biological activity of the complexes was examined to determine the effect of chelation on the bioactivity of Ctp. It was observed that free Ctp possesses very low inhibitory activity towards several bacteria and fungi. However, the potency of its Cr(III)-complex exceeded that of the standard drug Ciprofloxacin against all of the tested bacterial strains, and the potency of this complex was 28% and 11% higher than those of the standard drug Fluconazole against the Aspergillus flavus and Penicillium Sp fungal strains, respectively.  相似文献   

19.
Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.  相似文献   

20.
Saji J  Prasada Rao T  Ramamohan TR  Reddy ML 《Talanta》1999,50(5):1065-1071
The extraction behaviour of iron(III) and titanium(IV) from acidic chloride solutions has been investigated using 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) in xylene as an extractant. The results demonstrate that these metal ions are extracted into xylene as Fe(PBI)(3) and TiO(PBI)(2). The equilibrium constants of the extracted complexes have been deduced by non-linear regression analysis by taking into account complexation of metal ion with inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. IR and proton NMR ((1)H NMR) spectra were used to further clarify the nature of complexes extracted into organic phase. The effect of the nature of the diluent on the extraction of iron(III) and titanium(IV) has been studied and correlated with dielectric constants. The extraction behaviour of titanium(IV) has also been compared with that of other metal ions, viz. magnesium(II), vanadium(V), chromium(VI), iron(III), manganese(II), zinc(II) and zirconium(IV), which are associated with the titanium in waste chloride liquors of the titanium-mineral-processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号