首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of [trans-RuCl(4)L(DMSO)](-) (A) and [trans-RuCl(4)L(2)](-) (B) [L = imidazole (Him), 1,2,4-triazole (Htrz), and indazole (Hind)] complexes has been studied in DMF, DMSO, and aqueous media by cyclic voltammetry and controlled potential electrolysis. They exhibit one single-electron Ru(III)/Ru(II) reduction involving, at a sufficiently long time scale, metal dechlorination on solvolysis, as well as, in organic media, one single-electron reversible Ru(III)/Ru(IV) oxidation. The redox potential values are interpreted on the basis of the Lever's parametrization method, and particular forms of this linear expression (that relates the redox potential with the ligand E(L) parameter) are proposed, for the first time, for negatively (1-) charged complexes with the Ru(III/II) redox couple center in aqueous phosphate buffer (pH 7) medium and for complexes with the Ru(III/IV) couple in organic media. The E(L) parameter was estimated for indazole showing that this ligand behaves as a weaker net electron donor than imidazole or triazole. The kinetics of the reductively induced stepwise replacement of chloride by DMF were studied by digital simulation of the cyclic voltammograms, and the obtained rate constants were shown to increase with the net electron donor character (decrease of E(L)) of the neutral ligands (DMSO < indazole < triazole < imidazole) and with the basicity of the ligated azole, factors that destabilize the Ru(II) relative to the Ru(III) form of the complexes. The synthesis and characterization of some novel complexes of the A and B series are also reported, including the X-ray structural analyses of (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(DMSO)], [(Ph(3)P)(2)N][trans-RuCl(4)(Htrz)(DMSO)], (H(2)ind)[trans-RuCl(4)(Hind)(DMSO)], and [(Hind)(2)H][trans-RuCl(4)(Hind)(2)].  相似文献   

2.
The osmium(III) complex [(DMSO)2H][trans-OsIIICl4(DMSO)2] (1) has been prepared via stepwise reduction of OsO4 in concentrated HCl using N2H(4).2HCl and SnCl(2).2H2O in DMSO. 1 reacts with a number of azole ligands, namely, indazole (Hind), pyrazole (Hpz), benzimidazole (Hbzim), imidazole (Him), and 1H-1,2,4-triazole (Htrz), in organic solvents, affording novel complexes (H2ind)[OsIIICl4(Hind)(DMSO)] (2), (H2pz)[OsIIICl4(Hpz)(DMSO)] (3), (H2bzim)[OsIIICl4(Hbzim)(DMSO)] (4), (H2im)[OsIIICl4(Him)(DMSO)] (6), and (H2trz)[OsIIICl4(Htrz)(DMSO)] (7), which are close analogues of the antimetastatic complex NAMI-A. Metathesis reaction of 4 with benzyltriphenylphosphonium chloride in methanol led to the formation of (Ph3PCH2Ph)[OsIIICl4(Hbzim)(DMSO)] (5). The complexes were characterized by IR, UV-vis, ESI mass spectrometry, 1H NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. In contrast to NAMI-A, 2-4, 6, and 7 are kinetically stable in aqueous solution and resistant to hydrolysis. Surprisingly, they show reasonable antiproliferative activity in vitro in two human cell lines, HT-29 (colon carcinoma) and SK-BR-3 (mammary carcinoma), when compared with analogous ruthenium compounds. Structure-activity relationships and the potential of the prepared complexes for further development are discussed.  相似文献   

3.
Hydrothermal chemistry has been exploited in the preparation of a series of manganese(II), iron(II), and nickel(II) triazolate frameworks, [Mn7(trz)8(CH3CO2)4(OH)2].2.5H2O (1.2.5H2O), [Mn5(Htrz)2(SO4)4(OH)2] (2), [Fe5(Htrz)2(SO4)4(OH)2] (3), [Fe3(Htrz)3(HSO4)(SO4)2(OH)].H2O (4.H2O), [Ni3(trz)3(OH)3(H2O)4].5H2O (5.5H2O), and [Ni3(trz)5(OH)].2.5H2O (6.2.5H2O). The materials all exhibit three-dimensional structures, reflecting the tendency of triazole/triazolate ligands to bridge multiple metal sites. A prominent characteristic of the structures is the presence of embedded metal clusters as building blocks: heptanuclear MnII units in 1, pentanuclear MII sites in 2 and 3, and trinuclear MII clusters in 4 and 5. The presence of the pentanuclear and trinuclear clusters of magnetic metal cations in 2-5 is reflected in the unusual magnetic characteristics of these materials, all of which exhibit spin frustration. The compound 5.5H2O reversibly desorbs/sorbs solvent. However, the dehydrated phase does not adsorb methanol, N2, O2, or H2, presumably as a consequence of the highly polar void volume and the narrow channels connecting the larger cavities of the void structure.  相似文献   

4.
Three unusual polyoxovanadate-based inorganic-organic hybrid complexes, [Zn(Im)(2)(DMF)(2)](2)[H(2)V(10)O(28)]·Im·DMF (1), [Zn(3)(Htrz)(6)(H(2)O)(6)][V(10)O(28)]·10H(2)O·Htrz (2) and {[Zn(3)(trz)(3)(H(2)O)(4)(DMF)](2)[V(10)O(28)]·4H(2)O}(n) (3) (Im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N'-dimethylammonium) have been synthesized at room temperature via evaporative crystallization, and characterized by single-crystal X-ray diffraction. Complex 1 shows the structure of a discrete [V(10)O(28)](6-) cluster grafted by two [Zn(Im)(2)(DMF)(2)](2+) fragments through two bridged oxygen atoms, representing a rarely observed coordination mode. Complex 2 consists of a linear trinuclear Zn(II) unit bridging six Htrz ligands and a [V(10)O(28)](6-) cluster as the counter anion, where the extensive hydrogen-bonding interactions lead to {Zn(3)-V(10)}(SMF) and a special water layer involving (H(2)O)(36) rings, and consequently forms a unique 3D metal-organic-water supramolecular network. Complex 3 can be described as a 3,4-connected fsc-type network, and is the first example of open coordination 3D framework based on [V(10)O(28)](6-) and the other two different secondary building units, involving mononuclear and binuclear Zn(II)-Htrz motifs. The optical properties of complexes 1-3 in the solid state are investigated at room temperature. The results show that complexes 1 and 3 emit intense blue luminescences attributed to the ligands, while complex 2 exhibits an infrequent fluorescent property, emitting both blue and yellow luminescences at 472 and 603 nm simultaneously. Furthermore, powder X-ray diffraction and thermogravimetric analyses of 1-3 are also investigated, which demonstrate their high purities and thermal stabilities.  相似文献   

5.
The reaction of the C=N bond in PhCH=NPh with the carbanionic species Ph2PCH2-, leading to the N-phenyl beta-aminophosphine Ph2PCH2CH(Ph)NHPh, L1, is described. This molecule reacts with different organic electrophiles to afford related compounds Ph2PCH2CH(Ph)NPhX (X = SiMe3, L2; COPh, L4), [Ph2MePCH2CH(Ph)NHPh]+(I-), L3, and [Ph2PCH2CH(Ph)N(Ph)CO]2, L5, containing two amido and two phosphino functions. The coordination properties of L1, L2, and L4 have been studied in palladium chemistry. The X-ray structure of [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] shows the bidentate coordination mode for the L1 ligand with equatorial C(Ph)-N(Ph) phenyl groups. [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] crystallizes at 298 K in the space group P2(1)/n with cell parameters a = 10.689(2) A, b = 21.345(3) A, c = 12.282(2) A, beta = 90.294(12) degrees, Z = 4, D(calcd) = 1.526. The reaction between 2 equiv of L1 and [PdCl(eta3-C3H5)]2 affords the [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] complex in which an unexpected N-H.Cl intramolecular interaction has been observed by an X-ray diffraction analysis. [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] crystallizes at 298 K in the monoclinic space group Cc with cell parameters a = 10.912(1) A, b = 17.194(2) A, c = 14.169(2) A, beta = 100.651(9) degrees, Z = 4, D(calcd) = 1.435. Neutral and cationic alkyl or allyl palladium chloride complexes containing L1 are also reported as well as a neutral allyl palladium chloride complex containing L4. Variable-temperature 31P[1H] NMR studies on the allyl complexes show that the eta3/eta1 allyl interconversion is enhanced by a positive charge and also by a N-H.Cl intramolecular interaction.  相似文献   

6.
Four Fe(III) compounds and one Fe(II) compound containing mononuclear, homoleptic, fluorinated phenolate anions of the form [Fe(OAr)(m)](n-) have been prepared in which Ar(F) = C(6)F(5) and Ar' = 3,5-C(6)(CF(3))(2)H(3): (Ph(4)P)(2)[Fe(OAr(F))(5)], 1, (Me(4)N)(2)[Fe(OAr(F))(5)], 2, {K(18-crown-6)}(2)[Fe(OAr(F))(5)], 3a, {K(18-crown-6)}(2)[Fe(OAr')(5)], 3b, and {K(18-crown-6)}(2)[Fe(OAr(F))(4)], 6. Two dinuclear Fe(III) compounds have also been prepared: {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-O)Fe(OAr(F))(3)], 4, and {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-OAr(F))(2)Fe(OAr(F))(3)], 5. These compounds have been characterized with UV-vis spectroscopy, elemental analysis, Evans method susceptibility, and X-ray crystallography. All-electron, geometry-optimized DFT calculations on four [Ti(IV)(OAr)(4)] and four [Fe(III)(OAr)(4)](-) species (Ar = 2,3,5,6-C(6)Me(4)H, C(6)H(5), 2,4,6-C(6)Cl(3)H(2), C(6)F(5)) with GGA-BP and hybrid B3LYP basis sets demonstrated that, under D(2d) symmetry, π donation from the O 2p orbitals is primarily into the d(xy) and d(z(2)) orbitals. The degree of donation is qualitatively consistent with expectations based on ligand Br?nsted basicity and supports the contention that fluorinated phenolate ligands facilitate isolation of nonbridged homoleptic complexes due to their reduced π basicity at oxygen.  相似文献   

7.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

8.
Three Htrz‐based metal complexes, [Cd(trz)(CH3OH)(nb)]n ( 1 ), [Cd(Htrz)(H2O)(nb)2]n ( 2 ), and {[Mn(Htrz)2(H2O)4] · 2nb} ( 3 ) (Htrz = 1,2,4‐triazole, Hnb = 4‐nitrobenzoic acid), have been synthesized by diffusion or solvent evaporation method and structurally characterized by single crystal X‐ray crystallography, elemental analysis, IR and fluorescence spectroscopy, and TG‐DTA. Structural determinations revealed that complex 1 has a two‐dimensional (2D) layer structure constructed by tridentate μN1,N2,N4‐bridging trz anions and CdII ions. Complex 2 presents a 1D polymeric chain structure bridged by bidentate μN1,N4‐bridging Htrz molecule and CdII ions, whereas compound 3 is a supramolecular assembly containing a mononuclear [Mn(Htrz)2(H2O)4]2+ dication and two free nb anions for charge compensation. Thus, the structural diversity of the three complexes is significantly governed by the coordination modes of the neutral/deprontated Htrz ligand, rather than the terminal/lattice nb anion. Additionally, the thermal stability of the complexes is observed to be dependent on the polymeric or discrete structure nature. At room temperature, the three solid complexes show Htrz‐based intraligand fluorescent emission.  相似文献   

9.
Two heterotrinuclear oligomeric complexes [trans-RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)](2)[MCl(2)] (M = Pd ; M = Pt ) are prepared from the metalloligand trans-[RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)] (dppm = Ph(2)PCH(2)PPh(2), ). The resultant linear alignment of the metals [Ru-M-Ru] is imposed by a combinative use of trans-directed spacers and planar metals with trans-juxtaposed donor sites. Ligand exchange of with [Pd(CH(3)CN)(4)][PF(6)](2) gives trans-[Ru(CH(3)CN)(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)][PF(6)] (). All complexes are characterized by single-crystal X-ray crystallography and solution spectroscopy. Acid-base titration on suggested protonation of the pendant pyridyl. Complexes and also undergo protonation at the C[triple bond, length as m-dash]C moiety under acid conditions. The inter-conversion of alkynyl and vinylidene functionality is described. The dual acid and base characters of makes it a potential metalloligand towards basic and acidic fragments in multinuclear heterometallic assemblies.  相似文献   

10.
By controlled Anderson type rearrangement reactions complexes of the general formula trans-[Os(IV)Cl(4)(Hazole)(2)], where Hazole = 1H-pyrazole, 2H-indazole, 1H-imidazole, and 1H-benzimidazole, have been synthesized. Note that 2H-indazole tautomer stabilization in trans-[Os(IV)Cl(4)(2H-indazole)(2)] is unprecedented in coordination chemistry of indazole. The metal ion in these compounds possesses the same coordination environment as ruthenium(III) in (H(2)ind)[Ru(III)Cl(4)(Hind)(2)], where Hind = 1H-indazole, (KP1019), an investigational anticancer drug in phase I clinical trials. These osmium(IV) complexes are appropriate precursors for the synthesis of osmium(III) analogues of KP1019. In addition the formation of an adduct of trans-[Os(IV)Cl(4)(Hpz)(2)] with cucurbit[7]uril is described. The compounds have been comprehensively characterized by elemental analysis, EI and ESI mass spectrometry, spectroscopy (IR, UV-vis, 1D and 2D NMR), cyclic voltammetry, and X-ray crystallography. Their antiproliferative acitivity in the human cancer cell lines CH1 (ovarian carcinoma), A549 (nonsmall cell lung carcinoma), and SW480 (colon carcinoma) is reported.  相似文献   

11.
The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.  相似文献   

12.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

13.
A uranyl triazole (UO(2))(2)[UO(4)(trz)(2)](OH)(2) (1) (trz = 1,2,4-triazole) was prepared using a mild solvothermal reaction of uranyl acetate with 1,2,4-triazole. Single-crystal X-ray diffraction analysis of 1 revealed it contains sheets of uranium-oxygen polyhedra and that one of the U(VI) cations is in an unusual coordination polyhedron that is intermediate between a tetraoxido core and a uranyl ion. This U(VI) cation also forms cation-cation interactions (CCIs). Infrared, Raman, and XPS spectra are provided, together with a thermogravimetric analysis that demonstrates breakdown of the compound above 300 °C. The UV-vis-NIR spectrum of 1 is compared to those of another compound that has a range of U(VI) coordination enviromments.  相似文献   

14.
A Wells‐Dawson Polyoxometalate‐based hybrid, Ag9(trz)3(Htrz)4 (H2O)(P2W18O62)·3H2O ( 1 ) (Htrz = 1,2,4‐1H‐triazole) was hydrothermally synthesized through using trz ligand and silver nitrate in the presence of [P2W18O62]6– polyoxoanion. In the 3D framework structure of compound 1 , two kinds of wave‐like Ag/trz chains originated from trz ligands and silver cations are aggregated in a “2+1” mode by {Ag2/trz} linkages to result in a 1D Ag/trz metal‐organic ribbon, which is further extended into a 3D framework structure by [P2W18O62]6– polyoxoanions through Ag‐O covalent bonds. Additionally, the electrochemical properties of compound 1 have also been investigated.  相似文献   

15.
The cooperative forces of aurophilic and hydrogen bonding have been used in the self-assembly of phosphine or diphosphine complexes of gold(I) with the thiolate ligands derived from 2-thiobarbituric acid, SC(4)H(4)N(2)O(2), by single or double deprotonation. The reaction of the corresponding gold(I) trifluoroacetate complex with SC(4)H(4)N(2)O(2) gave the complexes [Au(SC(4)H(3)N(2)O(2))(PPh(3))], 1, [(AuSC(4)H(3)N(2)O(2))(2)(micro-LL)], with LL = Ph(2)PCH(2)PPh(2), 2a, Ph(2)P(CH(2))(3)PPh(2), 2b, or Ph(2)PCH=CHPPh(2), 2c, or the cyclic complex [Au(2)(micro-SC(4)H(2)N(2)O(2))(micro-Ph(2)PCH(2)CH(2)PPh(2))], 3. In the case with LL = Ph(2)P(CH(2))(6)PPh(2), the reaction led to loss of the diphosphine ligand to give [Au(6)(SC(4)H(3)N(2)O(2))(6)], 4, a hexagold(I) cluster complex in which each gold(I) center has trigonal AuS(2)N coordination. Structure determinations show that 1 has no aurophilic bonding, 2b, 3, and 4 have intramolecular aurophilic bonding, and 2c has intermolecular aurophilic bonding that contributes to the supramolecular structure. All the complexes undergo supramolecular association through strong NH...O and/or OH...N hydrogen bonding, and complex 3 also takes part in CH...O hydrogen bonding. The supramolecular association leads to formation of interesting polymer, sheet, or network structures, and 4 has a highly porous and stable lattice structure.  相似文献   

16.
A series of complexes trans-[PdCl(2)L(2)] has been prepared by the reaction of [PdCl(2)(PhCN)(2)] and/or Na(2)[PdCl(4)] with L = pyridine or quinoline ligands having one or two carboxylic acid groups. These complexes can form 1-D polymers through O-H.O hydrogen bonding between the carboxylic acid groups, as demonstrated by structure determinations of [PdCl(2)(NC(5)H(4)-4-COOH)(2)], [PdCl(2)(NC(5)H(4)-3-COOH)(2)], and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)]. In some cases, solvation breaks down the O-H.O hydrogen-bonded structures, as in the structures of [PdCl(2)(NC(5)H(4)-3-COOH)(2)].2DMSO and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)].4DMF, while pyridine-2-carboxylic acid underwent deprotonation to give the chelate complex [Pd(NC(5)H(4)-2-C(O)O)(2)]. The complexes trans-[PdCl(2)L(2)], L = pyridine-3,5-dicarboxylic acid or 2,6-dimethyl pyridine-3,5-dicarboxylic acid, self-assembled to give 2-D sheet structures, with hydrogen bonding between the carboxylic acid groups mediated by solvate methanol or water molecules. In the cationic complexes [PdL'(2)L(2)](2+) (L'(2) = Ph(2)PCH(2)PPh(2), Ph(2)P(CH(2))(3)PPh(2); L = pyridine carboxylic acid; anions X(-) = CF(3)SO(3)(-)), hydrogen bonding between the carboxylic acid groups and anions or solvate acetone molecules occurred, and only in one case was a polymeric complex formed by self-assembly.  相似文献   

17.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

18.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

19.
A novel heterobimetallic alkynyl-bridged complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)], 1, and its oxidized species, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 2, have been synthesized and their X-ray crystal structures determined. A related vinylidene complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond](H)C[double bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 3, has also been synthesized and characterized. The cyclic voltammogram of 1 shows a quasireversible reduction couple at -1.49 V (vs SCE), a fully reversible oxidation at -0.19 V, and a quasireversible oxidation at +0.88 V. In accord with the electrochemical results, density-functional theory calculations on the hydrogen-substituted model complex Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)H(5))(dHpe) (Cp = C(5)H(5), dHpe = H(2)P[bond](CH(2))(2)[bond]PH(2)) (1-H) show that the LUMO is mainly bipyridine ligand pi* in character while the HOMO is largely iron(II) d orbital in character. The electronic absorption spectrum of 1 shows low-energy absorption at 390 nm with a 420 nm shoulder in CH(2)Cl(2), while that of 2 exhibits less intense low-energy bands at 432 and 474 nm and additional low-energy bands in the NIR at ca. 830, 1389, and 1773 nm. Unlike the related luminescent rhenium(I)-alkynyl complex [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C[bond]H)], 4, complex 1 is found to be nonemissive, and such a phenomenon is attributed to an intramolecular quenching of the emissive d pi(Re) --> pi*(bpy) (3)MLCT state by the low-lying MLCT and LF excited states of the iron moiety. Interestingly, switching on of the luminescence property derived from the d pi(Re) --> pi*(bpy) (3)MLCT state can be demonstrated in the oxidized species 2 and the related vinylidene analogue 3 due to the absence of the quenching pathway.  相似文献   

20.
Knope KE  Cahill CL 《Inorganic chemistry》2008,47(17):7660-7672
Four 2D uranium(VI) carboxyphosphonates, (UO 2)(O 3PCH 2CO 2H) ( 1), (UO 2) 4(HO 3PCH 2CO 2)(O 3PCH 2CO 2) 2(H 2O) 4.3H 2O ( 2), (UO 2)(O 3PCH 2CO 2).NH 4.H 2O (3), and (UO 2) 3(O 3PCH(CH 3)CO 2) 2(O 3PCH(CH 3)CO 2H).2NH 4.H 2O (4) have been prepared using hydrothermal techniques. Their crystal structures have been determined by single-crystal X-ray diffraction, and structural features have been confirmed by infrared spectroscopy. 1, 2, and 3 are constructed from the UO 2 (2+) cation and phosphonoacetate, (O 3PCH 2CO 2), molecules, whereas 4 consists of U(VI) coordinated to 2-phosphonopropionate, (O 3PCH(CH 3)CO 2), units. The thermal and fluorescent behaviors of these materials have also been investigated. The organophosphonate linkers observed in 2 and 4 were produced via the in situ hydrolysis of trialkylphosphonate starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号