首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic reactivity of a group of diferric oxo-bridged complexes (13) of a tetradentate ligand (bpmen = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-diaminoethane) toward alkane hydroxylation has been evaluated. Among the three complexes, the µ-oxo diiron(III) complex [Fe(bpmen)(µ-O)FeCl3] (1) has been synthesized for the first time. The complex 1 has been characterized by spectroscopic analysis and X-ray crystallography. At room temperature, the µ-oxo diiron(III) complexes 13 have been found to be useful catalysts in hydroxylation of alkanes with m-chloroperbenzoic acid as oxidant. [Fe(bpmen)(µ-O)FeCl3] (1) has been found to be the most active catalyst. Moreover, the catalytic ability of the complexes in the oxidation of alcohols to ketones with hydrogen peroxide at room temperature has also been investigated.  相似文献   

2.
We have studied the ground and excited states of the three dendritic polynuclear Pt(Ⅱ) complexes 1-[Cl(PH3)2PtC≡C]-3,5-[HC≡C]C6H3 (1), 1,3-[Cl(PH3)2PtC≡C]2-5-[HC≡C]C6H3 (2), and 1,3,5-[Cl(PH3)2- PtC≡C]3C6H3 (3), by using the B3LYP and UB3LYP methods, respectively. TDDFT approach with the PCM model was performed to predict the emission spectra properties of 1-3 in CH2Cl2 solution. We first predicted the excited-state geometries for the three complexes. With the change of the number of Pt(Ⅱ) atom, 1-3 show the different geometry structures in both the ground and excited states; furthermore, the increase of the metal density from 1 to 3 results in the red shift of the lowest-energy emissions along the series. The luminescent properties of 1 are somewhat different from those of 2 and 3. The emission properties of 2 and 3 are richer than 1. Our conclusion can give a good support for designing the high efficient luminescent materials.  相似文献   

3.
We have studied the ground and excited states of the three dendritic polynuclear Pt(II) complexes 1-[Cl(PH3)2PtC≡≡ C]-3,5-[HC≡≡ C]C6H3 (1), 1,3-[Cl(PH3)2PtC≡≡ C]2-5-[HC≡≡ C]C6H3 (2), and 1,3,5-[Cl(PH3)2- PtC≡≡ C]3C6H3 (3), by using the B3LYP and UB3LYP methods, respectively. TDDFT approach with the PCM model was performed to predict the emission spectra properties of 1―3 in CH2Cl2 solution. We first predicted the excited-state geometries for the three complexes. With the change of the number of Pt(II) atom, 1―3 show the different geometry structures in both the ground and excited states; fur- thermore, the increase of the metal density from 1 to 3 results in the red shift of the lowest-energy emissions along the series. The luminescent properties of 1 are somewhat different from those of 2 and 3. The emission properties of 2 and 3 are richer than 1. Our conclusion can give a good support for designing the high efficient luminescent materials.  相似文献   

4.
The synthesis of bifunctional dinuclear platinum complexes, [{PtCl(dach)}(2)-mu-Y](n+)Cl(n) (1-3; Y = H(2)N(CH(2))(3)NH(2)(CH(2))(4)NH(2), H(2)N(CH(2))(6)NH(2)(CH(2))(6)NH(2), and H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2), respectively; Figure 1) is reported. There was no labilization of the polyamine linker groups of the cis-1,2-diaminocyclohexane complexes in the presence of sulfur-containing species at physiological pH, in contrast to previous studies preformed on trans complexes. Metabolism reactions are somewhat dependent on the nature of the polyamine: at physiological pH, the spermidine complex 1 forms an inert (tetraamine)platinum species in which one platinum is chelated by a central and terminal amino group. The stability of cis-geometry complexes may make them viable second-generation polynuclear platinum clinical candidates.  相似文献   

5.
Seven dinuclear platinum(II) complexes with a novel chiral tetradentate ligand, (1R,1′R,2R,2′R)‐N1,N1′‐(1,4‐phenylenebis(methylene))dicyclohexane‐1,2‐diamine, were designed, synthesized and spectrally characterized. All the complexes were evaluated for their in vitro cytotoxicity against human HepG‐2, A549, HCT‐116 and MCF‐7 cancer cell lines. The results indicated that all compounds showed positive biological activity against HepG‐2, A549 and HCT‐116 cancer cell lines. In particular, compounds D7 and D2 showed better activity than carboplatin against HepG‐2 and A549 and compound D7 also showed an activity close to that of oxaliplatin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The new pyridinediphosphinite ligand PONOP (1) was synthesized in one step from 2,6-pyridinedimethanol and diphenylchlorophosphane. Reaction of 1 with PtCl(2)(PhCN)(2) led to the neutral homobimetallic complex [Pt(2)Cl(4)(PONOP)(2)] (2), where the benzonitriles have been substituted by the phosphorus atoms of 1. The X-ray structure of 2 revealed a metallamacrocycle where the pyridines remained free. Addition of 2 equiv of [Cu(MeCN)(4)](BF(4)) to 2 led to CuCl and to the binuclear dicationic complex [Pt(2)Cl(2)(PONOP)(2)](BF(4))(2) (3), where chloro ligands have been substituted by pyridine groups. Conversely, reaction of 3 with chloride anions gave back complex 2. Solid-state (X-ray) and solution (NMR) studies indicated that after the transformation of 2 into 3, the platinum centers were brought much closer and the pyridinediphosphinite ligand was stiffened. The methylene NMR protons of 3 were strongly deshielded, and the corresponding proton-phosphorus coupling constants followed a Karplus-type relationship.  相似文献   

7.
The reactions of 2,5-diformylpyrrole (1) and 2,6-diformylpyridine (2) with propane-1,3-diamine afforded new macrocyclic Schiff"s bases 5 and 6, respectively. Their structures were established by NMR spectroscopy and mass spectrometry. Binuclear copper(ii) and nickel(ii) complexes with ligand 5 were synthesized. Pentadentate Schiff"s base, viz., 2,6-bis[(2-aminophenylimino)methyl]pyridine, was prepared by demetallation of its complex with Cd(ClO4)2 using Na2S. In solutions, the latter Schiff"s base is quantitatively transformed into 2,6-bis(benzoimidazolyl)pyridine under the action of atmospheric oxygen or other mild oxidizing agents.  相似文献   

8.
Four tumor-targeted platinum(IV) complexes with ammonia and cyclohexylamine as the carrier groups and biotin as the axial group were designed, synthesized, and characterized. In vitro evaluation of the antitumor activity of complexes C1–C4 against lung cancer cells (A549), liver cancer cells (SMMC-7721), breast cancer cells (MCF-7), and colon cancer cells (SW480) was carried out. Complex C3 had the best cellular activity. Compared with cisplatin, complex C3 showed good anticancer activity against A549 cell line,complex C3 (6.34±0.44) is 3 times more cytotoxic than cisplatin (19.40±0.71),and against MCF-7 cell line complex C3 (4.22±0.11) is 5.4 times more cytotoxic than cisplatin (22.96±0.58), and against SW480 cell line complex C3 (6.65±0.60) is 3.4 times more cytotoxic than cisplatin (23.15±0.22). (Table 1) Axial chloride increased the redox power of complex C3 to increase the intercellular accumulation and the introduction of mixed amine had the ability to overcome cisplatin resistance. Complex C3 works best on MCF-7, then SW480, A549, and SMMC-7721. Thus, complex C3 is targeted by the axial introduction of biotin.  相似文献   

9.
The absorption of oxygen by solutions of bis(triphenylphosphine)cobalt(II) chloride in allylamine in the presence of heterocyclic ligands has been studied. Novel complexes are formed in the presence of benzotriazole. A new class of trinuclear complexes has been discovered and studied by X-ray diffraction. Oxidation of triphenylphosphine takes place catalytically in the presence of oxygen under mild conditions.  相似文献   

10.
The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.  相似文献   

11.
The Cu(II) complexes [Cu(Tppz)(Dipic)] · 8H2O (I) and [Pb2(Tppz)Cl4] n (II), where Tppz, H2Dipic are 2,3,5,6-tetrakis(2-pyridyl)pyrazine, dipicolinic acid, respectively, have been synthesized and characterized by elemental analyses, IR, cyclic voltammetry, and electronic spectral studies. Solid state structures of both complexes have been determined by single crystal X-ray crystallography. An ORTEP drawing of two complexes shows that the coordination geometry around the metal center is a distorted octahedron. There are extensive conventional intermolecular O-H…O, N-H…O, and weaker C-H…O and C-H…Cl non-classical hydrogen bonds, which cause the stability of the crystal structure. Crystal data for I: monoclinic, space group: C2/c, a = 35.421(3), b = 8.422(6), c = 22.824(8) Å, β = 101.69(2)°, V = 6668(5) Å3, Z = 8. Crystal data for II: triclinic, space group P \(\bar 1\) , a = 7.9534(4), b = 8.8682(5), c = 9.4245(5) Å, β = 95.086(2)°, V = 655.93(6) Å3, Z = 2.  相似文献   

12.
《Comptes Rendus Chimie》2003,6(3):283-290
Mixed valence cyanide bridged polynuclear complexes of formula [FeII(CNFeIIIL)6]x+, where L is a pentadentate ligand, may be considered as structural models for Prussian Blue. A judicious choice of the peripheral ligand allows us to tune their electronic and magnetic properties. A correlation between the nature of the peripheral ligand and the energy of the intervalence band is found. The acceptor power of the ligand shifts the intervalence band towards low energies and leads to an increase of the magnitude of the ferromagnetic interaction. Thus, the charge-transfer excited state is responsible for the ferromagnetic nature of the exchange coupling interaction in Prussian Blue. To cite this article: G. Rogez et al., C. R. Chimie 6 (2003).  相似文献   

13.
A series of novel dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,2-phenylenebis(methylene))dicyclohexane-1,2-diamine (HL), and mono-carboxylic acid derivatives as ligands have been designed, synthesized, and characterized. In vitro cytotoxicity evaluation of synthesized complexes against human HepG-2, A549, HCT-116, and MCF-7 cancer cell lines has been conducted by MTT assays. All compounds showed antitumor activity to HepG-2 and HCT-116 cell lines. Compound L2 exhibited better cytotoxicity than that of carboplatin against HepG-2 and A549 cell lines and also showed comparable activity against HCT-116 cell line.  相似文献   

14.
A potentially dodecadentate N8O4-donor ligand obtained from 2,2'-biimidazole and l-valine and its tetranuclear Cu(ii) complexes in different degrees of protonation were characterized by chemical and spectroscopic methods. The extensive solution studies performed reveal that the rise in pH media leads successively to the formation of imidazolato (pKa(1) and pKa(2) and hydroxido (pKa(3) and pKa(4)) bridges. A frozen solution EPR study shows a decrease in the signal intensity until an EPR silent spectrum is observed, upon increasing the basicity of the solution. The catalytic performance of the oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone was studied using UV-Vis-NIR absorption spectroscopic methods in CH3CN-H2O and in CH3OH-H2O at pH = 7.5, 8.0 and 8.5. A marked increase in activity, consistent with the formation of the hydroxide bridged species, is observed at pH = 8.5 in both solvent mixtures, but the activity is significantly higher in CH3OH-H2O.  相似文献   

15.
16.
A new diphosphine ligand assembled on the cyclotriphosphazene platform forms linear chelate and dimetallic bridged complexes with Au(I) and a cis-chelate complex with Pt(II).  相似文献   

17.
18.
Self-assembly processes between a tripodal ligand and Ln(III) cations have been investigated by means of supramolecular analytical methods. At an equimolar ratio of components, tetranuclear tetrahedral complexes are readily formed in acetonitrile. The structural analysis of the crystallographic data shows a helical wrapping of binding strands around metallic cations. The properties of this series of highly charged 3D compounds were examined by using NMR spectroscopy and optical methods in solution and in the solid state. In the presence of excess metal, a new trinuclear complex was identified. The X-ray crystal structure elucidated the coordination of metallic cations with two ligands of different conformations. By varying the metal/ligand ratio, a global speciation of this supramolecular system has been evidenced with different spectroscopic methods. In addition, these rather complicated equilibria were successfully characterised with the thermodynamic stability constants. A rational analysis of the self-assembly processes was attempted by using the thermodynamic free energy model and the impact of the ligand structure on the effective concentration is discussed.  相似文献   

19.
The ligands KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K (K(2)L(1)), N(CH(2)CH(2)N(Me)CS(2)Na)(3) (Na(3)L(2)), and the new chelates {(CH(2)CH(2))NCS(2)Na}(3) (Na(3)L(3)) and {CH(2)CH(2)N(CS(2)Na)CH(2)CH(2)CH(2)NCS(2)Na}(2) (Na(4)L(4)), react with the gold(I) complexes [ClAu(PR(3))] (R = Me, Ph, Cy) and [ClAu(IDip)] to yield di-, tri-and tetragold compounds. Larger metal units can also be coordinated by the longer, flexible linker, K(2)L(1). Thus two equivalents of cis-[PtCl(2)(PEt(3))(2)] react with K(2)L(1) in the presence of NH(4)PF(6) to yield the bimetallic complex [L(1){Pt(PEt(3))(2)}(2)](PF(6))(2). The compounds [NiCl(2)(dppp)] and [MCl(2)(dppf)] (M = Ni, Pd, Pt; dppp = 1,3-bis(diphenylphosphino)propane, dppf = 1,1'-bis(diphenylphosphino)ferrocene) also yield the dications, [L(1){Ni(dppp)}(2)](2+) and [L(1){Ni(dppf)}(2)](2+) in an analogous fashion. In the same manner, reaction between [(L'(2))(AuCl)(2)] (L'(2) = dppm, dppf; dppm = bis(diphenylphosphino)methane) and KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K yield [L(1){Au(2)(L'(2))}(2)]. The molecular structures of [L(1){M(dppf)}(2)](PF(6))(2) (M = Ni, Pd) and [L(1){Au(PR(3))}(2)] (R = Me, Ph) are reported.  相似文献   

20.
The synthesis and electronic properties of dinuclear ([(bipy)2Ru(I)M(terpy)][PF6]4(bipy = 2,2'-bipyridine, terpy = 2,2':6',2'-terpyridine; M = Ru, Os)) and trinuclear ([[(bipy)2Ru(I)]2M][PF6]6 M = Ru, Os, Fe, Co) complexes bridged by 4'-(2,2'-bipyridin-4-yl)-2,2':6',2'-terpyridine (I) have been investigated and are compared with those of mononuclear model complexes. The electrochemical analysis using cyclic voltammetry and differential pulse voltammetry reveals that there are no interactions in the ground state between adjacent metal centres. However, there is strong electronic communication between the 2,2'-bipyridine and 2,2':6',2'-terpyridine components of the bridging ligand. This conclusion is supported by a step-by-step reduction of the dinuclear and trinuclear complexes and the assignment of each electrochemical process to localised ligand sites within the didentate and terdentate domains. The investigation of the electronic absorption and emission spectra reveals an energy transfer in the excited state from the terminating bipy-bound metal centres to the central terpy-bound metal centre. This indicates that the bridge is able to facilitate energy transfer in the excited state between the metal centres despite the lack of interactions in the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号