首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a method for polypyrrole (PPy) coating of metallic Cu nanoparticles in aqueous solution in atmosphere. Colloid solution of Cu nanoparticles was prepared by reducing Cu ions with the use of hydrazine in an aqueous solution dissolving citric acid and cetyltrimethylammonium bromide as stabilizers. The PPy coating was performed by polymerizing pyrrole with the use of hydrogen peroxide as an initiator in an aqueous colloid solution of the Cu nanoparticles. Ultraviolet–visible extinction measurements, transmission electron microscopy observation, and X-ray diffraction measurements revealed that the metallic Cu nanoparticles with a size of 27.6 ± 11.1 nm were coated with PPy. The obtained PPy-coated Cu particles were chemically stable even in atmosphere.  相似文献   

2.
Copper, nickel and copper–nickel nanoparticles were prepared by solution combustion method for use in direct write printing. Structural (X-ray diffraction) and morphological (transmission electron microscope) investigations showed that pure metal (Cu and Ni) and CuNi alloy particles with face-centred cubic crystal structure were formed. Atomic absorption spectrometer studies confirmed that the nanoparticle compositions corresponded to the initial Cu/Ni molar ratios selected for synthesis. Particle size and morphology were significantly influenced by composition, with high Cu content coinciding with small, spherical particles as opposed to larger, irregular shapes observed at high Ni concentrations. X-ray photoelectron spectroscopy measurements revealed that after the reduction process the surface of the alloy nanoparticles was partially oxidised in air and the amount of metallic surface species decreased, while the concentration of oxidic surface species and hydroxides increased with increasing Cu concentration (i.e. decreasing particle size). Dispersions of CuNi nanoparticles have been deposited by use of AerosolJet? and sintered under reducing atmosphere at 300–800?°C in order to prepare conductive structures. Resistivity measurements and microscopical studies (SEM-FIB) of printed and sintered CuNi structures showed that the sintering properties of nanoparticles were dependent on their chemical composition.  相似文献   

3.
Copper nanoparticles are prepared in aqueous solution by reducing copper ions with hydrazine hydrate in the presence of cetyl trimethylammonium bromide (CTAB) and polyvinylpyrrolydone (PVP) as stabilizers. With only CTAB was used as stabilizer, copper nanoparticles are aggregated and partially oxidized to Cu(2)O. When both PVP and CTAB were used, dispersed copper nanoparticles with 56 nm diameter were obtained. Copper nanoparticles are simply mixed with poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in aqueous solution to form conducting composite. The effect of copper weight percent and surfactants on the conductivity and stability of the composite has been investigated.  相似文献   

4.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

5.
Cu nanoparticles with a mean diameter of 10-15 nm were prepared and self-assembled via discharge of bulk copper rods in a cetyltrimethylammonium bromide (CTAB)/ascorbic acid solution. Ascorbic acid was used as a protective agent to prevent the nascent Cu nanoparticles from oxidation in the solution; otherwise spindle-like Cu2O/CuO structures, with a lateral dimension of 30-50 nm and length of up to 100 nm, were formed in pure deionized water. The surfactant CTAB had a critical influence on self-assembly of spherical Cu nanostructures (with diameter of 700 nm-1 μm). Such a low-temperature and non-vacuum method, exhibiting the characters of both physical and chemical processes, provides a versatile choice for economical preparation and assembly of various metal nanostructures.  相似文献   

6.
We report a facile synthesis of branched gold nanocrystals by the addition of a suitable amount of NaOH to an aqueous solution of cetyltrimethylammonium bromide (CTAB), HAuCl(4), and ascorbic acid. The branched nanocrystals were formed within minutes of reaction and showed monopod, bipod, tripod, and tetrapod structures. They are crystalline and have smooth surfaces. These gold multipods are kinetically controlled products and are thermodynamically unstable. The branched nanocrystals quickly transformed into spherical nanoparticles within 1 h of reaction, and the process was essentially complete after 2 days. The morphological transformation has been monitored by both UV-vis absorption spectroscopy and electron microscopy. The appearance of two major absorption bands for the branched gold nanocrystals eventually became only a single band at 529 nm for the spherical nanoparticles. The resulting nanoparticles are single crystals with diameters of 20-50 nm and do not show a faceted structure. When the freshly prepared branched nanocrystals are kept in a refrigerator at 4 degrees C, their multipod structure can be preserved for over a month without significant spectral shifts.  相似文献   

7.
We report a simple chemical reduction method for the synthesis of different colored silver nanoparticles, AgNP, using tyrosine as a reducing agent. Effects of cetyltrimethylammonium bromide, CTAB, and tyrosine concentrations are analyzed by UV-visible measurements and scanning electron microscopy (SEM) to evaluate the mode of AgNP aggregation. The position and shape of the surface resonance plasmon absorption bands strongly depend on the reaction conditions, i.e., [CTAB], [tyrosine], and reaction time. Sub-, post-, and dilution-micellar effects are accountable for the fast and slow nucleation and growth processes. Spectrophotometric measurement also shows that the average size and the polydispersity of AgNP increase with [CTAB] in the solution. CTAB acted as a shape-directing agent.  相似文献   

8.
Nickel nanoparticles were prepared from their coordination compounds, such as [Ni(NH3)6]Cl2, [Ni(N2H4)2Cl2], [Ni(HNEt2)6]Cl2, and [Ni(H2NBu)6]Cl2 in aqueous solution by chemical reduction. The reaction of nickel ammine and alkylamine complexes with hydrazine monohydrate as a reducing agent was carried out at 90 °C and pH = 10–12. Depending on the influencing parameters such as oxidizing agent, pH, and temperature, the hydrazine reaction can be carried out in different pathways. The chemical reduction method is a simple procedure and also is the best one in the controlling of composition, size, and shape of Ni powder. The reduction of nickel complexes into the metallic Ni powder occurs via the dissociation of complexes and reduction by hydrazine in alkaline solution. Therefore, complexing agents have the most effect on the reduction reaction. The results show that, when the ligands in complexes were changed from ammine to diethylamine and butylamine, respectively, the crystalline size and morphology of nickel metal nanoparticles are changed. The chemical reduction of nickel complexes into metallic nickel can be accompanied with a change in the crystalline system. The pure nickel crystalline has a face-centered cubic structure. The nickel nanoparticles were characterized using IR spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometer analyses.  相似文献   

9.
This paper describes a metal–metal bonding technique using metallic Cu nanoparticles prepared in aqueous solution. A colloid solution of metallic Cu particles with a size of 54 ± 15 nm was prepared by reducing Cu2+ (0.01 M (CH3COO)2Cu) with hydrazine (0.6 M) in the presence of stabilizers (5 × 10?4 M citric acid and 5 × 10?3 M cetyltrimethylammonium bromide) in water at room temperature in air. Discs made of metallic materials (Cu, Ni/Cu, or Ag/Ni/Cu) were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas with help of the metallic Cu particle powder. Shear strength required for separating the bonded discs was 27.9 ± 3.9 for Cu discs, 28.1 ± 4.1 for Ni/Cu discs, and 13.8 ± 2.6 MPa for Ag/Ni/Cu discs. Epitaxial crystal growth promotes on the discs with a good matching for the lattice constants between metallic nanoparticles and metallic disc surfaces, which leads to strong bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
在β-环糊精(β-CD)水溶液的安全吸收剂量范围内, 利用β-CD来调控Cu2+的辐射还原. 随着β-CD的加入, 硝酸铜的辐射还原产物从Cu2O 逐渐转变为Cu. 当β-CD浓度增大至8.0 mmol·L-1时, 辐射还原产物主要为Cu纳米粒子. 在辐照过程中, Cu2+的还原没有经历Cu2O的中间过程. 这是由于β-CD对·OH的清除减少了·OH与水化电子(e-aq)的反应, 增大了e-aq的产额, 从而有利于Cu的生成. 另外, β-CD通过羟基在Cu纳米粒子表面的吸附可增强Cu纳米粒子在水溶液中的稳定性. 用紫外-可见(UV-Vis)吸收光谱、粉末X射线衍射(XRD)和选区电子衍射(SAED)对Cu2+辐射还原产物进行了表征.  相似文献   

11.
We report a solution‐phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as‐synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X‐ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N‐arylation of heterocycles, such as the C? N coupling reaction between p‐nitrobenzyl chloride and morpholine producing 4‐(4‐nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three‐component, one‐pot Mannich reaction between p‐substituted benzaldehyde, aniline, and acetophenone affording a 100 % conversion of the limiting reactant (aniline).  相似文献   

12.
The influence of different borane reducing agents (hydrazine borane and sodium borohydride) on the size of copper nanoparticles in sols prepared at 20°C through the reduction of Cu(II) ions in diluted aqueous solutions of high-molecular-mass poly(1,2-dimethyl-5-vinylpyridinium methyl sulfate) is studied. When hydrazine borane is used as a reducing agent, the nanoparticle size (3–14 nm in diameter) is independent of the solution pH. In the case of sodium borohydride, the transition from a highly acidic (pH 2.0) solution to solution with pH 4.5–8.5 during sol synthesis leads to a shift in the size distribution of nanoparticles toward larger diameters (from 3–14 to 10–20 nm). During the reduction of Cu(II) ions with sodium borohydride, the polymer-analogous reaction, which includes the reduction of pyridine rings of the polymer, proceeds simultaneously with the main process. The as-modified polymer is a weak polybase and, therefore, is protonated to a high extent via nitrogen atoms only in a strongly acidic solution. As pH is increased in the range 4.5–8.5, the positive charge of chains is decreased. The relationship between the nanoparticle size and variation in the positive charge of macromolecules is discussed in terms of the concept of the pseudomatrix synthesis of polymer-metal nanocomposite sols.  相似文献   

13.
A procedure for the continuous production of Cu(2)ZnSnS(4) (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used.  相似文献   

14.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

15.
The mechanistic aspects of the formation of sulfobetaine-stabilized copper nanoparticles were investigated by using in situ XANES (X-ray absorption near edge structure), UV-vis spectroscopy, and reaction calorimetry. The tetracoordinated sulfobetaine-Cu(II) complex was reduced to a stable sulfobetaine-Cu(I) complex prior to the formation of sulfobetaine-stabilized copper nanoparticles. The stability of the Cu(I) complex was found to be sensitive to the concentration of the sulfobetaine stabilizer and the addition rate of the reducing agent. It appears to exist primarily as a linear complex. A tetracoordinated Cu(I) complex as an intermediate has also been postulated. Based on the understanding from these investigations, a microfluidic process for copper nanoparticle synthesis was designed by using sulfobetaine-Cu(I) complex as the starting material. When compared with the copper nanoparticles synthesized by a conventional batch process, the microfluidic reactor process provided particles with a smaller size and narrower size distribution. The copper nanoparticles from the microreactor process could also be more easily purified and the particles were relatively stable in air. Both XRD and SAED indicated that the Cu nanoparticles synthesized have fcc structure.  相似文献   

16.
Based on the studies of their physical properties such as aqueous solution uptake, electric conductivity, and microstructure, CTAB/hexanol/water reverse micelles (CTAB, cetyltrimethyl ammonium bromide) were used to prepare ZrO2-Y2O3 nanoparticles. The relationship between the micelle microstructure and size, morphology, and aggregate properties of particles prepared was also investigated. It has been found that with high CTAB concentration ([CTAB] > 0.8 mol/l), the reverse micelles can solubilize a sufficient amount of aqueous solution with high metallic ion concentration ( approximately 1.0 mol/L), while the microstructure of the reverse micelles keeps unchanged. The most important factor affecting the size and shape of reverse micelles was found to be the water content w0 (w0, molar ratio of water to surfactant used). When both the CTAB concentration and the w0 values are low, the diameters of reverse micelles are below 20 nm, and the ZrO2-Y2O3 particles prepared are also very small. However, the powders obtained were found to form a lot of aggregates after drying and calcination. High CTAB concentration, high w0 value, and high metallic ion concentration in the aqueous phase for high powder productivity were found to be the suitable compositions of reverse micelles for preparing high-quality ZrO2-Y2O3 nanoparticles. Under these conditions, the reverse micelles are still spherical in shape even the reverse micellar system is nearly saturated with aqueous solutions. These reverse micelles were found to have a diameter of between 60 and 150 nm and the ZrO2-Y2O3 particles prepared therefrom range from 30 to 70 nm with spherical shape and not easy to form aggregates. Copyright 1999 Academic Press.  相似文献   

17.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构。随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳。  相似文献   

18.
The combinatorial screening of different metallic nanoparticles as electrocatalysts was investigated and efficiently applied for the detection of hydrazine. In a first step, glassy carbon microspheres decorated with metallic nanoparticles (Au, Pd, and Ag) were abrasively attached on the surface of a basal plane pyrolytic electrode giving a ‘multi–metal’ nanoarray. In a second step, electrodes modified with only one type of metallic nanoparticles allowed the identification of Pd as the unique catalytic material. In addition, a carbon‐epoxy composite electrode loaded with the Pd nanoparticles was then constructed for a practical use. The carbon‐epoxy composite nanoarray electrode was found to have excellent characteristics as for the sensing of hydrazine with a limit of detection of 2 μM.  相似文献   

19.
在β-环糊精(β-CD)水溶液的安全吸收剂量范围内,利用β-CD来调控Cu2+的辐射还原.随着β-CD的加入,硝酸铜的辐射还原产物从Cu2O逐渐转变为Cu.当β-CD浓度增大至8.0mmol·L-1时,辐射还原产物主要为Cu纳米粒子.在辐照过程中,Cu2+的还原没有经历Cu2O的中间过程.这是由于β-CD对·OH的清除减少了·OH与水化电子(ea-q)的反应,增大了ea-q的产额,从而有利于Cu的生成.另外,β-CD通过羟基在Cu纳米粒子表面的吸附可增强Cu纳米粒子在水溶液中的稳定性.用紫外-可见(UV-Vis)吸收光谱、粉末X射线衍射(XRD)和选区电子衍射(SAED)对Cu2+辐射还原产物进行了表征.  相似文献   

20.
Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号