首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A leucine dehydrogenase has been successfully altered through several rounds of protein engineering to an enantioselective amine dehydrogenase. Instead of the wild-type α-keto acid, the new amine dehydrogenase now accepts the analogous ketone, methyl isobutyl ketone (MIBK), which corresponds to exchange of the carboxy group by a methyl group to produce chiral (R)-1,3-dimethylbutylamine.  相似文献   

3.
The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cleavage of a desired target sequence or to disfavor the cleavage of nontarget sequences. We also applied a previously described in vitro selection method to reveal the comprehensive substrate specificity profile of the wild-type I-SceI homing endonuclease. Together these tools were used to successfully evolve mutant I-SceI homing endonucleases with altered DNA cleavage specificities. The most highly evolved enzyme cleaves the target mutant DNA sequence with a selectivity that is comparable to wild-type I-SceI's preference for its cognate substrate.  相似文献   

4.
5.
6.
7.
Directed evolution of stereo‐ and regioselective enzymes constitutes a prolific source of catalysts for asymmetric transformations in organic chemistry. In this endeavor (iterative) saturation mutagenesis at sites lining the binding pocket of enzymes has emerged as the method of choice, but uncertainties regarding the question of how to group many residues into randomization sites and how to choose optimal upward pathways persist. Two new approaches promise to beat the numbers problem effectively. One utilizes a single amino acid as building block for the randomization of a 10‐residue site, the other also employs only one but possibly different amino acid at each position of a 9‐residue site. The small but smart libraries provide highly enantioselective epoxide hydrolase or lipase mutants, respectively.  相似文献   

8.
9.
In a previous paper, the combinatorial active-site saturation test (CAST) was introduced as an effective strategy for the directed evolution of enzymes toward broader substrate acceptance. CASTing comprises the systematic design and screening of focused libraries around the complete binding pocket, but it is only the first step of an evolutionary process because only the initial libraries of mutants are considered. In the present study, a simple method is presented for further optimization of initial hits by combining the mutational changes obtained from two different libraries. Combined lipase mutants were screened for hydrolytic activity against six notoriously difficult substrates (bulky carboxylic acid esters) and improved mutants showing significantly higher activity were identified. The enantioselectivity of the mutants in the hydrolytic kinetic resolution of two substrates was also studied, with the best mutant-substrate combination resulting in a selectivity factor of E=49. Finally, the catalytic profile of the evolved mutants in the hydrolysis of simple nonbranched carboxylic acid esters, ranging from acetate to palmitate, was studied for theoretical reasons.  相似文献   

10.
Artificial metalloenzymes, resulting from incorporation of a metal cofactor within a host protein, have received increasing attention in the last decade. The directed evolution is presented of an artificial transfer hydrogenase (ATHase) based on the biotin‐streptavidin technology using a straightforward procedure allowing screening in cell‐free extracts. Two streptavidin isoforms were yielded with improved catalytic activity and selectivity for the reduction of cyclic imines. The evolved ATHases were stable under biphasic catalytic conditions. The X‐ray structure analysis reveals that introducing bulky residues within the active site results in flexibility changes of the cofactor, thus increasing exposure of the metal to the protein surface and leading to a reversal of enantioselectivity. This hypothesis was confirmed by a multiscale approach based mostly on molecular dynamics and protein–ligand dockings.  相似文献   

11.
Tadashi Ema  Hideo Yagasaki 《Tetrahedron》2006,62(26):6143-6149
The gene encoding a versatile biocatalyst that shows high enantioselectivity for a variety of ketones, SCR (Saccharomyces cerevisiae carbonyl reductase), has been identified, cloned, and expressed in Escherichia coli. Two types of expression systems with high NADPH-regenerating capacities have been constructed. One is the tandem system, where the genes encoding SCR and GDH (glucose dehydrogenase) are located in the same plasmid, and the other is the two-plasmid system, where each of the SCR and GDH genes is located in separate plasmids that can coexist in one E. coli cell. Asymmetric reduction of ketones with the recombinant E. coli cells gave synthetically useful 20 alcohols, 11 of which were enantiomerically pure. The productivity of one of these products was as high as 41 g/L.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Directed evolution combined with saturation mutagenesis identified six different point mutations that each moderately increases the enantioselectivity of an esterase from Pseudomonas fluorescens (PFE) towards either of two chiral synthons. Directed evolution identified a Thr230Ile mutation that increased the enantioselectivity from 12 to 19 towards methyl (S)-3-bromo-2-methylpropanoate. Saturation mutagenesis at Thr230 identified another mutant, Thr230Pro, with higher-than-wild-type enantioselectivity (E=17). Previous directed evolution identified mutants Asp158Asn and Leu181Gln that increased the enantioselectivity from 3.5 to 5.8 and 6.6, respectively, towards ethyl (R)-3-phenylbutyrate. In this work, saturation mutagenesis identified other mutations that further increase the enantioselectivity to 12 (Asp158Leu) and 10 (Leu181Ser). A homology model of PFE indicates that all mutations lie outside the active site, 12-14 A from the substrate and suggests how the distant mutations might indirectly change the substrate-binding site. Since proteins contain many more residues far from the active site than close to the active site, random mutagenesis is strongly biased in favor of distant mutations. Directed evolution rarely screens all mutations, so it usually finds the distant mutations because they are more common, but probably not the most effective.  相似文献   

19.
20.
The deracemization of racemic amines to yield enantioenriched amines using S‐stereoselective amine oxidases (AOx) has recently been attracting attention. However, R‐stereoselective AOx that are suitable for deracemization have not yet been identified. An R‐stereoselective AOx was now evolved from porcine kidney D ‐amino acid oxidase (pkDAO) and subsequently use for the deracemization of racemic amines. The engineered pkDAO, which was obtained by directed evolution, displayed a markedly changed substrate specificity towards R amines. The mutant enzyme exhibited a high preference towards the substrate α‐methylbenzylamine and was used to synthesize the S amine through deracemization. The findings of this study indicate that further investigations on the structure–activity relationship of AOx are warranted and also provide a new method for biotransformations in organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号