共查询到20条相似文献,搜索用时 0 毫秒
1.
Xuliang Lin Cheng Cai Hongming Lou Xueqing Qiu Yuxia Pang Dongjie Yang 《Cellulose (London, England)》2017,24(1):61-68
Effect of cationic surfactants alkyltrimethylammonium bromide (CnTAB) with varied alkyl chain lengths on the enzymatic hydrolysis of Avicel and the surface charge of cellulase was investigated. Enzymatic hydrolysis of Avicel increased linearly from 42.1 to 61.4 % with the increase of the concentration of cetyltrimethylammonium bromide (C16TAB) logarithmically from 0.0001 to 0.01 mM, and reached a maximum value at the concentration of 0.01–0.03 mM. When the concentration was increased further, the cellulase solution became positively charged and the enzymatic hydrolysis of Avicel decreased rapidly. With the increasing alkyl chain length, CnTAB provided more proton and neutralized the negative charge of cellulase more obviously. Therefore, the required concentration of CnTAB could be less to enhance the enzymatic hydrolysis of Avicel. In addition, C16TAB could enhance enzymatic hydrolysis efficiency of corncob at high solid content from 35.0 to 56.3 %; C16TAB could reduce about 60 % of the cellulase loading in the enzymatic hydrolysis of corncob to obtain the same glucose yield. Effect of C16TAB on the enzymatic hydrolysis of typical pretreated softwood and hardwood was also investigated. This study laid the foundation for using CnTAB to recover cellulase, and provided the design direction for cellulase with higher activity and better stability by adjusting its hydrophilicity and chargeability. 相似文献
2.
In this paper, it is reported that positively charged Mg3Al layered double hydroxide (LDH) nanoparticles can induce the spontaneous formation of vesicles in micelle solution of sodium
dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) with a mass ratio of 8:2. The formation of vesicles was
demonstrated by negative-staining transmission electron microscopy observations. The size of the vesicles increased with the
increase in the concentration of Mg3Al-LDH nanoparticles. A composite of LDH nanoparticles encapsulated in vesicles was formed. A possible mechanism of LDH-induced
vesicle formation was suggested. The positively charged LDH surface attracts negatively charged micelles or free amphiphilic
molecules, which facilitates their aggregation into bilayer patches. These bilayer patches connect to each other and finally
close to form vesicles. It was also found that an adsorbed compound layer of SDS and DTAB micelles or molecules on the LDHs
surface played a key role in vesicle formation. 相似文献
3.
Byung-Hwan Um M. Nazmul Karim Linda L. Henk 《Applied biochemistry and biotechnology》2003,105(1-3):115-125
The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121°C, with acid concentrations
ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until
the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0–10% (w/v) solution
of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose
recovery and cellulose digetibility. Hemicellulose recovery was 62–90%, and enzymatic digestibility of the cellulose that
remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10–20% more sugar. Furthermore, digestibility
was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose
removal than to delignification. 相似文献
4.
The surfactants sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) displace human serum albumin (HSA) from loosely packed self-assembled monolayers (SAM) of hydrophobic alkyl chains by different means. Removal of HSA is of interest because previous work has suggested that the adsorption of HSA to such loosely packed SAMs may be sufficiently tenacious to offer opportunities for surface passivation. While HSA remains on the surface after exposure to SDS and rinsing, no protein remains after exposure to CTAB and rinsing. X-ray reflectivity and X-ray photoelectron spectroscopy measurements indicate that CTAB molecules remain interdigitated in the loosely packed SAM after rinsing, suggesting that CTAB is more effective in removing the HSA because it interacts more strongly with the SAM. 相似文献
5.
Surfactant aggregation properties in aqueous and mixed organic/aqueous solutions have attracted considerable interests especially for the applications to the template synthesis of nanoporous inorganic materials. In this work, we study the aggregation behavior of cetyl trimethylammonium bromide surfactant in both aqueous and mixed water/ethanol solutions by the steady-state fluorescence probe technique. The critical micelle concentration (CMC) and the micelle aggregation number were determined in solutions with different ethanol contents. The CMC increases and the aggregation number decreases with increasing ethanol content in solutions. The effect of ethanol on the micelle formation can be treated as a structure breaking process. The density functional theory was used to calculate the charge density distribution over the surfactant molecules in different solvents. The results obtained reveal that the micelle size distribution in solutions can be adjusted by varying the content of ethanol in solvents.__________From Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 186–191.Original English Text Copyright © 2005 by Li, Han, Zhang, Wang.This article was submitted by the authors in English. 相似文献
6.
Muzzalupo R Gente G La Mesa C Caponetti E Chillura-Martino D Pedone L Saladino ML 《Langmuir : the ACS journal of surfaces and colloids》2006,22(14):6001-6009
Mixtures composed of water, sodium dodecyl sulfate (SDS), and a bolaform surfactant with two aza-crown ethers as polar headgroups (termed Bola C-16) were investigated by modulating the mole ratios between the components. The two surfactants have ionic and nonionic, but ionizable, headgroups, respectively. The ionization is due to the complexation of alkali ions by the aza-crown ether unit(s). Structural, thermodynamic, and transport properties of the above mixtures were investigated. Results from surface tension, translational self-diffusion, and small angle neutron scattering (SANS) are reported and discussed. Interactions between the two surfactants to form mixed micelles result in a combination of electrostatic and hydrophobic contributions. These effects are reflected in the size and shape of the aggregates as well as in transport properties. The translational diffusion of the components in mixed micelles, in particular, depends on the Bola C-16/SDS mole ratio. Nonideality of mixing of the two components was inferred from the dependence of the critical micelle concentration, cmc, on the mole fraction of Bola C-16. This behavior is also reflected in surface adsorption and in the area per polar headgroup at the air-water interface. SANS data analysis for the pure components gives results in good agreement with previous findings. An analysis of data relative to mixed systems allows us to compute some structural parameters of the mixed aggregates. The dependence of aggregation numbers, nu(T), on the Bola C-16/SDS mole ratio displays a maximum that depends on the overall surfactant content and is rationalized in terms of the nonideality of mixing. Aggregates grow perpendicularly to the major rotation axis, as formerly observed in the Bola C-16 system, and become progressively ellipsoidal in shape. 相似文献
7.
Micellization characteristics and counterion binding properties of cetyltrimethyl ammonium bromide (CTAB) in presence of urea and a nonionic surfactant polyoxyethylene sorbitan monolaurate (PSML), and of sodium dodecyl sulphate (SDS) in presence of urea as well as of several mixtures of CTAB with a bile salt, sodium cholate (NaC), and sodium chloride have been studied. Both urea and PSML have increased the critical micelle concentration (CMC) of the surfactants, the former being more effective than the latter. The analysis of the results supports the pseudophase micellar model to hold over the mass action model. Pure CTAB micelles bind more counterions (96 %) than pure SDS micelles (87 %), and the decreasing effect of urea on the binding is less in case of the former than the latter. A 41 mixture of CTAB and sodium cholate (NaC) can micellize and the micelles bind 87 % bromide ion, whereas 21 and 11 mixtures do not micellize. Micelles of 11 mixture of CTAB and NaCl can bind counter bromide ions to the extent of 92 %. The limiting concentrations of urea required to effect counterion binding by CTAB and SDS micelles are 0.15 mol dm–3 and 0.25 mol dm–3, respectively. Such effect is shown by PSML on CTAB at a ratio 0.281. The activation energy of conduction of SDS has increased in the presence of urea up to a concentration of 4 mol dm–3, at higher concentrations the activation energy has decreased, the effect being more for surfactant concentration above CMC than below. 相似文献
8.
9.
It is well-known that vesicles form in mixtures of cationic and anionic surfactants. We have investigated mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) with the latter in excess over a long time, about 500 days. We have followed the growth of the aggregates by light scattering and checked the morphologies by cryogenic transmission electron microscopy (cryoTEM). All samples showed a monotonic growth with decreasing rate (the change of size was about linear on a logarithmic time scale). In series of samples with weight ratio 30:70 of CTAB/SOS and total surfactant concentration between 0.5 and 3 wt %, the size increased with the surfactant concentration up to 2 wt % and decreased thereafter; cryoTEM examination revealed that the samples contained a majority of open bilayer structures at the highest concentrations. Part of the sample at 2 wt % was diluted to 0.5 wt % after 60 days. The size measured after dilution was slightly smaller than before but well above that found in the directly prepared 0.5 wt % sample, and the particle size in the three samples continued to grow in parallel. Structures other than unilamellar vesicles were observed also in samples at 2 wt % total surfactant concentration at CTAB/SOS ratios close to the borders of the vesicle lobe in the (quasi) ternary phase diagram as published (Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A. J. Phys. Chem. 1996, 100, 5874). The results clearly show that the spontaneous vesicle populations do not represent equilibrium populations. They also suggest that the vesicle lobes in the phase diagram mainly represent areas where a lamellar phase is easily dispersed in the form of vesicles in an aqueous solution. 相似文献
10.
11.
The effects of sodium dodecyl sulfate on extracellular lipase produced byCandida lipolytica have been studied. The microorganism was grown in culture medium containing different sodium dodecyl sulfate concentrations
added to the culture at different intervals of growth. The extracellular lipase activity was not detected when the treated
culture supernatants were directly tested in Yeast Mold Agar-Triolein-Rhodamine plates, regardless of surfactant addition
time and concentrations. However, after ammonium sulfate precipitation and dialysis, the extracellular lipase activity could
be recovered. Therefore, the surfactant, under the experimental conditions used here, does not seem to be able to inhibit
lipase production, but it does inhibit the enzyme activity because of its presence in the mixture of the reaction. 相似文献
12.
C. A. Kennedy S. N. MacMillan M. J. McAlduff D. G. Marangoni 《Colloid and polymer science》2001,279(1):1-7
The micelle formation process for a typical anionic surfactant, sodium dodecyl sulfate, and a typical cationic surfactant,
dodecyltrimethylammonium bromide, has been investigated in a series of mixed solvents consisting of different concentrations
of isomeric hexanediols (1,2-hexanediol and 1,6-hexanediol) in water. The critical micelle concentrations and the degrees
of counterion dissociation of the mixed micelles were obtained from conductance experiments. Luminescence probing experiments
have been used to determine the concentration of micelles in solution and, hence, the micellar aggregation numbers of the
surfactants in the mixed solvent systems. The alcohol aggregation numbers were determined by combining the partition coefficients
(obtained using NMR paramagnetic relaxation enhancement experiments) with the micellar concentrations from the luminescence
probing experiments. All these results are interpreted in terms of the difference in the interaction of the isomeric hexanediols
with the surfactant as a function of the position of the hydroxyl groups on the six-carbon chain of the alcohol.
Received: 28 June 2000/Accepted: 5 July 2000 相似文献
13.
《Electrochemistry communications》2003,5(9):759-764
It was investigated whether interferences from surfactants in anodic stripping voltammetry (ASV) could be remedied by the anionic surfactant sodium dodecyl sulfate (SDS) which causes little or no interference in itself. Cadmium and lead were used as test analytes, and measurements were performed in acetate buffer as well as in 0.1 M HNO3. One hundred parts per million of the interfering surfactant was added. SDS eliminated severe interference from the non-ionic surfactants Triton© X-100 and dodecyl octaethylene glycol ether as well as from the polymer polyethylene glycol 6000 and from the cationic surfactant cetyl trimethyl ammonium bromide. SDS could not remedy the extraordinarily severe interference from the cationic surfactant cetyl pyridinium chloride. Two anionic surfactants were also tested as interferents but they had little detrimental effect on the ASV signals. The effect of SDS was explained by the formation of mixed micelles which scavenge the interferent in the bulk solution and by competitive displacement of the interferent at the electrode surface. 相似文献
14.
The phase equilibria of surfactant aqueous mixtures, hexadecyltrimethylammonium bromide and sodium dodecyl sulfate, have
been studied by polarizing microscopy, quasielastic light scattering, conductivity, potentiometric, electrophoretic, and surface
tension measurements. Adsorption at the air/solution interface, association and precipitation in bulk solution strongly depended
on the molar ratio and the concentration of surfactants. Catanionic vesicles coexisted with crystalline catanionic salts in
a broad concentration range. The relative proportions of crystallites and vesicles varied according to the concentration and
the molar ratio of the surfactants. The solid crystalline phase was progressively converted to catanionic vesicles with increasing
surfactant molar ratio. At the highest excess of one of the surfactants transition from catanionic vesicles to mixed micelles
occurred. The formation and stability of different phases are discussed in terms of surfactant molecular packing constraints
and electrostatic interactions in the headgroup region. Surfactant tail-length asymmetry and the change of electrostatic interactions
in the headgroup region from attractive to repulsive are governing factors for the transition from planar to curved bilayers.
Received: 9 June 1998 Accepted: 18 August 1998 相似文献
15.
《The Journal of chemical thermodynamics》2004,36(1):7-16
The apparent molar volumes Vφ of glycine, alanine, valine, leucine, and lysine have been determined in aqueous solutions of 0.05, 0.5, 1.0 mol · kg−1 sodium dodecyl sulfate (SDS) and 1.0 mol · kg−1 cetyltrimethylammonium bromide (CTAB) by density measurements at T=298.15 K. The apparent molar volumes have also been determined for diglycine and triglycine in 1 mol · kg−1 SDS and CTAB solutions. These data have been used to calculate the infinite dilution apparent molar volumes V20 for the amino acids and peptides in aqueous SDS and CTAB and the standard partial molar volumes of transfer (ΔtrV2,m0) of the amino acids and peptides to these aqueous surfactant solutions. The linear correlation of V20 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO−), CH2 group and other alkyl chains of the amino acids to V20. The results on the partial molar volumes of transfer from water to aqueous SDS and CTAB have been interpreted in terms of ion–ion, ion–polar and hydrophobic–hydrophobic group interactions. The volume of transfer data suggests that ion–ion or ion–hydrophilic group interactions of the amino acids and peptides are stronger with SDS compared to those with CTAB. Comparison of the hydration numbers of amino acids calculated in the present studies with those in other solvents from literature shows that these numbers are almost the same at 1 mol · kg−1 level of the cosolvent/cosolute. Increasing molality of the cosolvent/cosolute beyond 1 mol · kg−1 lowers the hydration number of the amino acids due to increased interactions with the solvent and reduced electrostriction. 相似文献
16.
Zhaobing Shen Chaonan Jin Haisheng Pei Jiping Shi Li Liu Junshe Sun 《Cellulose (London, England)》2014,21(5):3383-3394
Pretreatment has been viewed as the most efficient strategy for lignocellulosic biomass-to-fermentable sugars conversion. In this study a novel pretreatment with acidic electrolyzed water (AEW) and FeCl3 was proposed and tested to deconstruct the recalcitrance of corn stover and enhance its subsequent cellulose-to-sugar conversion. The effects of AEW pH and FeCl3 concentration on hemicellulose degradation were investigated, and the results showed the highest hemicellulose removal (93.40 %) and recovery (93.04 %) were achieved at AEW pH 2.30 and FeCl3 concentration 0.05 mol/L. Further research on the properties of AEW solutions with FeCl3, including their pH, ORP, and DO revealed the synergistic effects of strong acidity and high oxidizing capacity of the solution could boost hemicellulose breakup and enhance the enzymatic hydrolysis of cellulose (92.00 %) by removing most of hemicellulose and increasing the accessibility and digestibility of cellulose. Therefore, these studies prove AEW coupled with FeCl3 pretreatment is an effective and promising approach in biomass-to-biofuel process. 相似文献
17.
18.
Hexadecane-in-water emulsion droplets were formed in a homogeniser in the presence of a mixture of an anionic surfactant
(sodium dodecyl sulfate, SDS) and nonionic surfactants of various chain lengths [nonylphenol ethoxylate (C9φEN, N=100, 40 and 30) or an alcohol ethoxylate (Brij35)]. The dynamic mobility of the oil droplets was then measured using a flow-through
version of an AcoustoSizer. Large changes were observed in the dynamic mobility of the particles formed with the mixed surfactants
compared to particles formed with SDS alone. O'Brien's “gel layer” model was employed to interpret the data. The characteristics
of the adsorbed layer appeared to be similar whether the nonionic surfactant was adsorbed concurrently with the SDS as the
emulsion formed or was merely added afterwards to the emulsion established. The particle size, the charge and the molar fraction
of SDS had virtually no effect. The layers formed with the nonionic surfactants decreased in thickness with decreasing molecular
weight as expected. Passage through the homogeniser itself had no effect on the properties of the largest nonionic surfactant
and, hence, on the adsorption layer formed with it.
Received: 4 October 2000 Accepted: 16 October 2000 相似文献
19.
We use agarose gel electrophoresis to characterize how the monovalent catioinic surfactant cetyltrimethylammonium bromide (CTAB) compacts double-stranded DNA, which is detected as a reduction in electrophoretic DNA velocity. The velocity reaches a plateau at a ratio R = 1.8 of CTAB to DNA-phosphate charges, i.e., above the neutralization point, and the complexes retain a net negative charge at least up to R = 200. Condensation experiments on a mixture of two DNA sizes show that the complexes formed contain only one condensed DNA molecule each. These CTAB-DNA globules were further characterized by time-resolved measurements of their velocity inside the gel, which showed that CTAB does not dissociate during the migration but possibly upon entry into the gel. Using the Ogston-model for electrophoresis of spherical particles, the measured in-gel velocity of the globule is quantitatively consistent with CTAB having two opposite effects, reduction of both the electrophoretic charge and DNA coil size. In the case of CTAB the two effects nearly cancel, which can explain why opposite velocity shifts (globule faster than uncomplexed DNA) have been observed with some catioinic condensation agents. Dissociation of the complexes by addition of anionic surfactants was also studied. The DNA release from the globule was complete at a mixing ratio between anionic and cationic surfactants equal to 1, in agreement with equilibrium studies. Circular DNA retained its supercoiling, and this demonstrates a lack of DNA nicking in the compaction-release cycle which is important in DNA transfection and purification applications. 相似文献
20.
O. E. Philippova S. G. Starodoubtzev 《Journal of Polymer Science.Polymer Physics》1993,31(11):1471-1476
The dynamics of the changing microenvironment of the fluorescent probe pyrene in slightly cross-linked networks of poly(diallyldimethylmmonium bromide) during diffusion of sodium dodecyl sulfate (SDS) in the gel phase has been investigated by fluorescence spectroscopy. Values of the spectral ratio I3/I1 for pyrene monomer included in SDS micelles in the swollen networks fall between the corresponding values for pyrene in water and for pyrene dissolved in SDS micelles in aqueous solution. In the narrow interval of the surfactant concentrations in the gel phase, the formation of pyrene excimers is observed. The values of the critical micelle concentration in the gel phase (ca. 5 × 10?4 to 8 × 10?4 mol/L) are tenfold lower than in aqueous solutions of the surfactant. The effective micellar diffusion coeffecient D in the gel phase increases with increasing swelling of the network. © 1993 John Wiley & Sons, Inc. 相似文献