首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocellulose is an interesting building block for functional materials and has gained considerable interest due to its mechanical robustness, large surface area and biodegradability. It can be formed into various structures such as solids, films and gels such as hydrogels and aerogels and combined with polymers or other materials to form composites. Mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) films were studied in order to understand their potential for packaging and functional printing applications. Impact of raw material choice and nanocellulose production process on these properties was evaluated. MFC and NFC were produced following two different routes. NFC was produced using a chemical pretreatment followed by a high pressure homogenization, whereas MFC was produced using a mechanical treatment only. TEMPO-mediated oxidation followed by one step of high pressure (2,000 bar) homogenization seems to produce a similar type of NFC from both hardwood and softwood. NFC films showed superior mechanical and optical properties compared with MFC films; however, MFC films demonstrated better barrier properties against oxygen and water vapor. Both the MFC and NFC films were excellent barriers against mineral oil used in ordinary printing inks and dichlorobenzene, a common solvent used in functional printing inks. Barrier properties against vegetable oil were also found to be exceptionally good for both the NFC and MFC films.  相似文献   

2.
In this study, biodegradable foams were produced using cellulose nanofibrils (CNFs) and starch (S). The availability of high volumes of CNFs at lower costs is rapidly progressing with advances in pilot-scale and commercial facilities. The foams were produced using a freeze-drying process with CNF/S water suspensions ranging from 1 to 7.5 wt% solids content. Microscopic evaluation showed that the foams have a microcellular structure and that the foam walls are covered with CNF’s. The CNF’s had diameters ranging from 30 to 100 nm. Pore sizes within the foam walls ranged from 20 to 100 nm. The materials’ densities ranging from 0.012 to 0.082 g/cm3 with corresponding porosities between 93.46 and 99.10 %. Thermal conductivity ranged from 0.041 to 0.054 W/m-K. The mechanical performance of the foams produced from the starch control was extremely low and the material was very friable. The addition of CNF’s to starch was required to produce foams, which exhibited structural integrity. The mechanical properties of materials were positively correlated with solids content and CNF/S ratios. The mechanical and thermal properties for the foams produced in this study appear promising for applications such as insulation and packaging.  相似文献   

3.
In order to determine how the physicochemical properties of starch foams depend on the type of the starch used in baking process, starch foams were prepared using native starch and selected starch derivatives. The morphology, the density, the water adsorption capacity, the impact strength, and the thermal properties were determined for foams made from native starch, pregelatinized starch, hydroxypropylated starch with different degrees of substitution (DS = 0.015–0.025 and DS = 0.1), low distarch phosphate, medium distarch phosphate, and two cationic starch types (DS = 0.027–0.029 and DS = 0.029–0.033). The modified starch foams exhibited a more expanded structure with thinner cell walls than the foam made from native starch. The density of the native starch was 0.21 g cm?3 , while the density of the modified starch foams was lower, in the range of 0.14–0.17 g cm?3 except for the starch foam made from medium distarch phosphate. The thermal and physicochemical properties of the foams made from the other starch derivatives were dependent on the functional groups and the degree of cross-linking. The foam made from medium distarch phosphate had a significantly higher density and impact strength that was accompanied by a somewhat lower water adsorptivity.  相似文献   

4.
Porous sulfated zirconia foams were manufactured by a simple methodology based on the sol–gel process combined with a liquid foam template that used a surfactant mixture. A block copolymer (Pluronic F-127) and an anionic surfactant [sodium dodecylsulfate (SDS)] were mixed in different proportions in order to optimize the porous and surface properties of the ceramic material. By adjusting the SDS/Pluronic ratio, it was possible to obtain sulfated zirconia with a combination of macropores and mesopores that provided high porosity (≈90 %) and surface area (≈80 m2 g?1). The sulfate groups linked to the zirconia surface stabilized the tetragonal phase, to the detriment of the thermodynamically stable monoclinic phase. The sulfate groups and the tetragonal phase decreased as a function of the amount of SDS in the liquid foam template. The combined porous and structural characteristics, together with surface acidity, provided enhanced catalytic activity when the sulfated zirconia foams were employed in the isopropanol dehydration reaction. A further benefit was the selectivity towards propene and negligible formation of acetone.  相似文献   

5.
Moisture sorption decreases dimensional stability and mechanical properties of polymer matrix biocomposites based on plant fibers. Cellulose nanofiber reinforcement may offer advantages in this respect. Here, wood-based nanofibrillated cellulose (NFC) and bacterial cellulose (BC) nanopaper structures, with different specific surface area (SSA), ranging from 0.03 to 173.3 m2/g, were topochemically acetylated and characterized by ATR-FTIR, XRD, solid-state CP/MAS 13C-NMR and moisture sorption studies. Polymer matrix nanocomposites based on NFC were also prepared as demonstrators. The surface degree of substitution (surface-DS) of the acetylated cellulose nanofibers is a key parameter, which increased with increasing SSA. Successful topochemical acetylation was confirmed and significantly reduced the moisture sorption in nanopaper structures, especially at RH = 53 %. BC nanopaper sorbed less moisture than the NFC counterpart, and mechanisms are discussed. Topochemical NFC nanopaper acetylation can be used to prepare moisture-stable nanocellulose biocomposites.  相似文献   

6.
Ultra-lightweight cellulose foams were prepared by regeneration of sodium dodecyl sulfate (SDS)/cellulose/NaOH/urea blend solution via mechanical agitation and then freeze-drying. The morphology and properties of the blend solutions and foams were investigated via optical microscope, rheometer, BET and SEM. As a result, it was found that the inclusion complex structure between cellulose macromolecules and the solvent molecules was not destroyed. Moreover, the bubbles were about 20–50 μm in the solutions and larger (>100 μm) in the foams. Not only the micropores (bubbles) but also the nanopores could be observed in the wet and dried foams. The cellulose foams possessed ultra-low density of about 30 mg/cm3 and high specific surface area. The result of X-ray diffraction and Fourier transform infrared spectroscopy indicated that the cellulose foams were transited from cellulose I to cellulose II after dissolution and gelation. Bubbles inside the wet foams weakened the mechanical properties, but inversely increased the mechanical properties in the dried foams. Typical “J”-shaped curves were observed during the mechanical test, which revealed good compressive strength of dried foams. In this work, cellulose foams with ultra-lightweight and good mechanical properties were obtained, which exhibited great potentials for further development and comprehensive utilization of cellulose.  相似文献   

7.
This paper demonstrates a way to utilize the rheological properties of high consistency microfibrillated and nanofibrillated cellulose (MFC and NFC) based furnishes for improved dewatering. This is relevant to a new manufacturing platform that is being developed to form composite webs from suitable mixtures of MFC or NFC, traditional pulp fibres and pigments. The studied furnishes were evaluated in the consistencies range of 5–15 % with an MCR 300 rheometer and an immobilization cell. This setup enables us to characterize the rheology of the samples before and during the dewatering process. Classical rheological methods are used to characterise MFC and NFC furnishes. Yield stress as an indicator of the flocculated network strength was found to increase with the consistencies, following the increase in elastic moduli, which indicated a gel-like strongly flocculated matrix. The shear thinning properties of furnishes are observed to follow the Oswald’s rheological model on a wide range of shear rates. It was found that when the MFC and NFC furnishes were dewatered under vacuum conditions, the final solids content was increased with application of shear. This behaviour is more pronounced for furnishes which contained the more swollen NFC (higher WRV, i.e. higher zeta potential). This effect is further exemplified by the change of the complex and dynamic viscosities during the dewatering. The shear rate, the fibre content, and the furnish consistencies were also found to influence the dewatering rate.  相似文献   

8.
Organic aerogels based on two important and widely abundant renewable resources, soy proteins (SP) and nanofibrillar cellulose (NFC) are developed from precursor aqueous dispersions and a facile method conducive of channel- and defect-free systems after cooling and freeze-drying cycles that yielded apparent densities on the order of 0.1 g/cm3. NFC loading drives the internal morphology of the composite aerogels to transition from network- to fibrillar-like, with high density of interconnected cells. Composite aerogels with SP loadings as high as ca. 70 % display a compression modulus of 4.4 MPa very close to that obtained from reference, pure NFC aerogels. Thus, the high compression modulus of the composite system is not compromised as long as a relatively low amount of reinforcing NFC is present. The composite materials gain moisture (up to 5 %) in equilibrium with 50 % RH air, independent of SP content. Furthermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents. Fast liquid sorption rates are observed in the case of composite aerogels in contact with hexane. In contrast, water sorption is modulated by the chemical composition of the aerogel, with an important contribution from swelling. The potential functionalities of the newly developed SP–NFC composite green materials can benefit from the reduced material cost and the chemical features brought about the amino acids present in SPs.  相似文献   

9.
This work examines the addition of cationic polymers, cationic polyacrylamide (CPAM) and polyamide–amine–epichlorohydrin (PAE), to cellulose nanofibres to produce superior forming characteristics. The addition of 2 mg of high MW CPAM/g of nanofibres halved the drainage time to under 1 min at 0.1 wt% solids content due to increasing the floc size and the fibre forming a bulky and porous filter medium during drainage. The more open structure created in the wet state was partially preserved during the drying process, reducing the sheet density from 760 to 680 kg/m3, at the highest level of polymer addition. The addition of CPAM resulted in significant additional bridging between nanofibres, which then substantially increased the non-uniformity of the filter medium. PAE addition at 10 mg/g of micro fibrillated cellulose (MFC), also reduced drainage time, while increasing retention, but without changing the sheet uniformity. Wet strength increased continuously with PAE addition level, reaching 31.6 kN m/kg at the highest level of 20 mg of PAE/g of MFC.  相似文献   

10.
Total and surface charge of three different carboxymethylated nanofibrillated/microfibrillated cellulose (NFC/MFC) samples were investigated by using titrimetric methods (conductometric and polyelectrolyte (PE) titrations). Conductometric titration was found to be suitable method for the NFC total charge measurements when the back titration with HCl was applied. Surface charge measurements of NFC/MFC were conducted by using both indirect and direct PE titrations. The direct PE titration was found to be a more suitable method for the surface charge determination of NFC/MFC whereas the indirect PE titration produced too high surface charge values. This is presumably due to kinetically locked polyelectrolyte conformations on the NFC/MFC surfaces or entrapment of residual polymer after adsorption onto the NFC/MFC gel network. Finally, NFC was propargyl-functionalized and the changes in surface and total charge were successfully monitored and compared to those of propargyl-functionalized pulp. A good correlation between the titrimetric methods and elemental analysis was observed.  相似文献   

11.
Though research into nanofibrillated cellulose (NFC) has recently increased, few studies have considered co-utilising NFC and nanographite (NG) in composite films, and, it has, however been a challenge to use high-yield pulp fibres (mechanical pulps) to produce this nanofibrillar material. It is worth noting that there is a significant difference between chemical pulp fibres and high-yield pulp fibres, as the former is composed mainly of cellulose and has a yield of approximately 50 % while the latter is consist of cellulose, hemicellulose and lignin, and has a yield of approximately 90 %. NFC was produced by combining TEMPO (2,2,6,6-tetramethypiperidine-1-oxyl)-mediated oxidation with the mechanical shearing of chemi-thermomechanical pulp (CTMP) and sulphite pulp (SP); the NG was produced by mechanically exfoliating graphite. The different NaClO dosages in the TEMPO system differently oxidised the fibres, altering their fibrillation efficiency. NFC–NG films were produced by casting in a Petri dish. We examine the effect of NG on the sheet-resistance and mechanical properties of NFC films. Addition of 10 wt% NG to 90 wt% NFC of sample CC2 (5 mmol NaClO CTMP-NFC homogenised for 60 min) improved the sheet resistance, i.e. from that of an insulating pure NFC film to 180 Ω/sq. Further addition of 20 (CC3) and 25 wt% (CC4) of NG to 80 and 75 wt% respectively, lowered the sheet resistance to 17 and 9 Ω/sq, respectively. For the mechanical properties, we found that adding 10 wt% NG to 90 wt% NFC of sample HH2 (5 mmol NaClO SP-NFC homogenised for 60 min) improved the tensile index by 28 %, tensile stiffness index by 20 %, and peak load by 28 %. The film’s surface morphology was visualised using scanning electron microscopy, revealing the fibrillated structure of NFC and NG. This methodology yields NFC–NG films that are mechanically stable, bendable, and flexible.  相似文献   

12.
Unbleached (UN), oxygen-delignified and fully-bleached (FB) birch fibers with a residual lignin content of ca. 3, 2 and <1 %, respectively, were used to produce nanofibrillated cellulose (NFC) and nanopaper by using an overpressure device. The tensile index, elongation and elastic modulus of nanopaper were compared and the effect of residual cell wall components accessed. Under similar manufacturing conditions, UN NFC produced nanopaper with a density of 0.99 g/cm3, higher than that from FB NFC (0.7 g/cm3). This translated in much lower air permeability in the case of UN nanopaper (1 and 11 mL/min for UN and FB samples, respectively). Fundamentally, these observations are ascribed to the finer fibrils produced during microfluidization of UN fibers compared to those from lower yield counterparts (AFM roughness of 8 and 17 nm and surface areas of 124 and 98 m2/g for NFC from UN and FB fibers, respectively). As a result, values of stress at break and energy absorption of nanopaper from high yield fibers are distinctively higher than those from fully bleached NFC. Interactions of water with the surface and bulk material were affected by the chemical composition and structure of the nanofibrils. While UN nanopaper presented higher water contact angles their sorption capacity (and rate of water absorption) was much higher than those measured for nanopaper from FB NFC. These and other observations provided in this contribution are proposed to be related to the mechanoradical scavenging capacity of lignin in high shear microfluidization and the presence of residual heteropolysaccharides.  相似文献   

13.
The objective of this study was to develop nanofibrillated cellulose (NFC)-based substrate for rapid detection of melamine in milk by surface-enhanced Raman spectroscopy (SERS). NFC were served as a highly porous platform to load with gold nanoparticles (AuNPs), which can be used as a flexible SERS substrate with nanoscale roughness to generate strong electromagnetic field in SERS measurement. The NFC/AuNP substrate was characterized by UV–Vis spectroscopy and electron microscopy. Milk samples contaminated by different concentrations of melamine were measured by SERS coupled with NFC/AuNP substrate. The spectral data analysis was conducted by multivariate statistical analysis [i.e. partial least squares (PLS)]. Satisfactory PLS result for quantification of melamine in milk was obtained (R = 0.9464). The detection limit for melamine extracted from liquid milk by SERS is 1 ppm, which meets the World Health Organization’s requirement of melamine in liquid milk. These results demonstrate that NFC/AuNP substrate has improved homogeneity and can be used in SERS analysis for food safety applications.  相似文献   

14.
The influence of swelling on the rheological and dewatering properties of high consistency nanocellulose based furnishes is considered. Different consistencies of suspensions (1–4 %) and furnishes (5–15 %) were prepared made of two distinctly different grades of nanocellulose containing, micro fibrillated (MFC) and nanofibrillated (NFC) cellulose, and systematic comparison between the rheological and dewatering parameters was conducted. The characterization of the rheological and dewatering properties was performed with a stress controlled rheometer combined with an immobilization cell in parallel plate geometry, as well as with an independent gravimetric dewatering device. The surface charge of nanofibrillated cellulose was found to influence the rheological and dewatering properties of the evaluated suspensions and furnishes due to its impact on swelling and effectively bound water. Due to the complex behavior of the novel materials, the immobilization times were difficult to determine from the changes in the damping factor, as often used for coating colors. Instead, we propose a modified method for determination of immobilization times based on a rheological analysis adopting the rate of change in viscoelastic loss factor over time, d(tan δ = G′′/G′)/dt, describing the critical point(s) in the ratio of the viscous to elastic stress response moduli. With this approach we show that it is possible to characterize immobilization of these materials incorporating the concept of the combined physical interactions of the components and the non-removable bound water, without requiring a direct measure of the nanocellulose surface swelling. Based on the results, we hypothesize that fibrillar swelling impacts the dewatering of MFC and NFC suspensions, and furnishes containing them, by an interfiber pore connectivity blocking/sealing mechanism, which effectively defines the immobilization of the material matrix at the end point of free water extraction caused by the physical blocking imposed by the remaining bound water.  相似文献   

15.
This study aimed to improve the stability of nanofibrillated cellulose (NFC) in an electrolyte containing system, which was achieved by the grafting of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) via the ceric ammonium nitrate-induced polymerization process. The results indicated that upon grafting the salt resistance and thermal stability of NFC were significantly improved. Moreover, the stability of the modified NFC increased with the AMPS loading. Compared to the control (the original NFC), the poly-AMPS/NFC (357.5 mg/g AMPS) exhibited much improved stability in a 400 mmol/L NaCl solution, and its viscosity was 350 mPa s. The thermogravimetric analysis results showed that the initial decomposition temperature of the modified NFC increased from 265 to 330 °C. Transmission electron microscopy (TEM) observations showed that the main morphologic features of NFC were not altered, suggesting that the grafting reaction occurred on the fiber surface. The modified NFC can have promising industrial applications, such as oil recovery.  相似文献   

16.
The stability of emulsions and foams stabilized with hexylamine-modified silica particles has been studied as depending on the concentration of the surfactant. Silica modification with short-chain hexylamine leads to a marked increase in the contact angle upon selective wetting and inversion of the phases in the emulsions. The contact angles upon wetting silica surface by aqueous phases are no larger than 60°, while the maximum stability of foams corresponds to contact angles of 38°–50° depending on the concentration of the solid particles.  相似文献   

17.
This study demonstrates the preparation of a renewable and biocompatible co-cross-linked nanocomposite hydrogel from poly(methyl vinyl ether-co-maleic acid), poly(ethylene glycol) and nanofibrillated cellulose (NFC). The cross-linking reaction was favored by the formation of ester linkages as evidenced by Fourier transform infrared spectroscopy. The increase in gel fraction content of the treated NFC varied from 22 to 85 % which exhibited an increase in degree of chemical cross-linking to form a rigid network with the addition of varying amount of NFC (20–60 %). This increase in gel rigidity influenced gel swelling, showing relatively reduced water uptake ability above 40 % NFC. Rheological measurements indicated the formation of gels with superior mechanical properties.  相似文献   

18.
We report a simple method to produce foams and emulsions of extraordinary stability by using hydrophobic cellulose microparticles, which are formed in situ by a liquid-liquid dispersion technique. The hydrophobic cellulose derivative, hypromellose phthalate (HP), was initially dissolved in water-miscible solvents such as acetone and ethanol/water mixtures. As these HP stock solutions were sheared in aqueous media, micron sized cellulose particles formed by the solvent attrition. We also designed and investigated an effective and simple process for making HP particles without any organic solvents, where both the solvent and antisolvent were aqueous buffer solutions at different pH. Consequently, the HP particles adsorbed onto the water/air or water/oil interfaces created during shear blending, resulting in highly stable foams or foam/emulsions. The formation of HP particles and their ability for short-term and long-term stabilization of interfaces strongly depended on the HP concentration in stock solutions, as well as the solvent chemistry of both stock solutions and continuous phase media. Some foams and emulsion samples formed in the presence of ca. 1 wt% HP were stable for months. This new class of nontoxic inexpensive cellulose-based particle stabilizers has the potential to substitute conventional synthetic surfactants, especially in edible, pharmaceutical and biodegradable products.  相似文献   

19.
Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed by a melt-compounding process (T-MFC-reinforced PP). The effects that the engineering process and the microfibrillation of the pulp had upon the dispersion and mechanical properties were investigated through tensile tests, rheological analysis and X-ray computed tomography. The bead-milling method enabled a uniform microfibrillation of the pulp to under 100 nm, which corresponded to a surface area of 133–146 m2/g for the pulp, found by the Brunauer–Emmett–Teller (BET) analysis. The T-MFC-reinforced PP with 30 wt% MFC content exhibited a tensile modulus of 5.3 GPa and a strength of 85 MPa, whereas the B-MFC-reinforced PP composites with the same content of MFC exhibited values of 4.1 GPa and 59.6 MPa, respectively. Rheological analysis revealed that the complex viscosity and storage modulus at 170 °C of T-MFC-reinforced PP with 30 wt% MFC content are 5–7 and 5–8 times higher than that of B-MFC-reinforced PP, respectively. This indicated that T-MFC was more dispersed in the PP than B-MFC. Therefore, T-MFC produced a more rigid interconnected network in the matrix during the melting state than B-MFC.  相似文献   

20.
Cellulose–silica composite aerogels were prepared via “one-pot” process: aqueous solutions of cellulose–8 wt% NaOH and sodium silicate were mixed, coagulated and dried with supercritical CO2. The system was studied both in the fluid and solid (dry) states. Cellulose and sodium silicate solutions were mixed at different temperatures and concentrations; mixture properties were monitored using dynamic rheology. The gelation time of the mixture was strongly reduced as compared to that of cellulose–NaOH solutions; we interpret this phenomenon as cellulose self-aggregation inducing partial coagulation due to competition for the solvent with sodium silicate. The gelled cellulose/sodium silicate samples were placed in aqueous acid solution which completed cellulose coagulation and led to in situ formation of sub-micronic silica particles trapped in a porous cellulose matrix. After drying with supercritical CO2, an organic–inorganic aerogel composite was formed. The densities obtained were in the range of 0.10–0.25 g/cm3 and the specific surface area was between 100 and 200 m2/g. The silica phase was shown to have a reinforcing effect on the cellulose aerogel, increasing its Young’s modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号