首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Films of cellulose nanofibrils (CNF) (referred to as nanopaper) present a great potential in many applications due to the abundance, low environmental impact, excellent oxygen barrier properties and good mechanical performance of CNF. However, the strong hygroscopic character of the natural nanofibers limits their use in environments with high relative humidity. In this paper, we introduce a simple route for the esterification and processing of CNF with the aim of reducing their hydrophilicity, and producing hydrophobic cellulose nanopaper with reduced moisture sensitivity. The preparation steps of hydrophobic nanopapers involve vacuum filtration, solvent exchange from water to acetone, and reaction with anhydride molecules bearing different hydrophobic alkyl chains by hot pressing. Porous films having a surface area between 38 and 47 g/m2 and pore sizes in the 3–200 nm range are obtained. This method preserves the crystalline structure of native cellulose, and successfully introduces hydrophobic moieties on CNF surface as confirmed by FTIR, XPS and elemental analysis. As a result, modified nanopapers have a reduced moisture uptake, both higher surface water contact angle and wet tensile properties as compared with reference non-modified nanopaper, thus illustrating the benefit of the modification for the use of cellulose nanopaper in humid environments.  相似文献   

2.
A hybrid nanopaper consisting of carbon nanofibre (CNF) and/or clay, polyhedral oligomeric silsesquioxane (POSS), ammonium polyphosphate (APP), has been fabricated through the papermaking process. The as-prepared hybrid nanopaper was then incorporated onto the surface of glass fibre (GF) reinforced polymer matrix composites through injection moulding. The morphologies of hybrid nanopapers with and without the polymer resin were characterized with scanning electron microscopy (SEM). The polymer resin penetrated the entire nanopaper under a high-pressure compressed air system. The thermal decomposition behaviour of hybrid nanopapers infused with resin was studied with real-time thermogravimetric analysis/Fourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of clay in the hybrid paper increased the char residues of the nanocomposites. The fire retardant performance of composite laminates incorporating hybrid nanopaper was evaluated by cone calorimeter testing using a radiant heat flux of 50 kW/m2. The cone test results indicated that the peak heat release rate (PHRR) decreased dramatically in the case of laminate composites incorporating CNF/clay/APP hybrid paper. However, the extent of reduction of PHRR of the composite laminates incorporated with CNF/POSS/APP hybrid paper was lower. The formation of compact char materials was observed on the surface of the residues and analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The flame retardant mechanisms of hybrid nanopapers in composite laminates are discussed.  相似文献   

3.
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.  相似文献   

4.
In this study, a hybrid nanopaper consisting of carbon nanofiber (CNF) and polyhedral oligomeric silsequioxane (POSS) or cloisite Na+ clay, has been fabricated through the papermaking process. The hybrid nanopaper was then coated on the surface of glass fiber (GF) reinforced polymer matrix composites through resin transfer molding (RTM) process. The morphologies of the hybrid nanopaper and resulting nanocomposites were characterized with scanning electron microscopy (SEM). It can be seen that the nanopaper had a porous structure with highly entangled carbon nanofibers and the polyester resin completely penetrated the nanopaper throughout the thickness. The thermal decomposition behavior of the hybrid nanopapers and nanocomposites was studied with the real‐time thermogravimetric analysis/ flourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of pristine nanoclay increased the thermal stability of the nanopaper, whereas the POSS particles decreased the thermal stability of the nanopaper. The fire retardant performance of composite laminates coated with the hybrid nanopaper was evaluated with cone calorimeter tests using a radiated heat flux of 50 kW/m2. The cone calorimeter test results indicate that the peak heat release rate (PHRR) decreased dramatically in composite laminates coated with the CNF‐clay nanopaper. However, the PHRRs of the CNF‐POSS nanopaper coated composite laminates increased. The formation of compact char materials was observed on the surface of the residues of the CNF‐clay nanopaper after cone calorimeter test. The flame retardant mechanisms of the hybrid nanopaper in the composite laminates are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In the present work the evolution of physical and mechanical properties of papers and nanopapers is studied. Handsheets made of eucalyptus fibres reinforced with 0, 25, 50, 75 and 100 wt% of nanofibrillated cellulose (NFC) content were fabricated using a Rapid Köthen-like equipment. The obtained papers and nanopapers were physical- and mechanically-characterized. The results showed a significant increase in density and a reduction of porosity in the samples during their transition from paper to nanopaper; besides, nanopapers were more transparent and smoother than normal papers. These physical changes where more evident with increasing amounts of NFC. Regarding mechanical properties, nanopapers with a 100 wt% content of NFC improved their strength and rigidity in 228 and 317 %, respectively, in comparison with normal papers. The evolution of strength and rigidity from paper to nanopaper was linear in relation to the amount of NFC, which means that the ultimate tensile strength was mainly dependant on nanofibril failure.  相似文献   

6.
In this study, a hybrid nanopaper consisting of carbon nanofiber (CNF), and pristine montmorillonite clay (MMT, Cloisite Na+) was fabricated through a paper‐making process. The hybrid nanopaper was coated onto the surface of glass fiber (GF) reinforced polymer matrix composites through resin transfer molding process. The characterization results using scanning electron microscopy (SEM) and energy dispersion analysis of X‐ray (EDAX) show that the nanopaper had a porous structure and the polymer resin completely penetrated the hybrid nanopaper. The thermogravimetric analysis (TGA) test results revealed that the addition of MMT clay nanoparticles significantly enhanced the thermal stability of the nanopaper. The flammability of composite samples was evaluated by cone calorimeter test under a radiant heat flux of 50 kW/m2. The peak heat release rate (PHRR) was dramatically reduced for the composites coated with the CNF–MMT nanopaper. For comparison, the composites coated with the CNF–organic MMT clay (OMT, Cloisite 20A) nanopaper were also evaluated with cone calorimeter test. The test results showed that the MMT clay was more effective than the OMT in the reduction of the PHRR. The combustion behavior of these samples was also examined by microscale combustion calorimetry (MCC) test. The PHRR obtained from the MCC test decreased with the MMT content in the nanopaper, which was in good agreement with cone calorimeter test results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Highly flexible, optically transparent epoxy resin/cellulose composites were prepared by using the solution impregnation method firstly and then thermal cured. The composite contained 60 wt% resin was still mechanically stable and flexible, and it integrated the merits of cellulose and resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties, and a decrease in the water uptake and the permeability towards water vapor gas was also observed. The transmittance of the composite films at 550 nm was about 85–88 %. The thermal and mechanical properties of the composite films were improved. Moreover, the composite films could be used in UV imprint lithography for circuit, and the definition could be compared with that of widely used glass plate.  相似文献   

8.
Bio-based bacterial cellulose (BC) epoxy composites were manufactured and their mechanical properties were examined. The BC was initially fabricated from Vietnamese nata de coco by means of alkaline pretreatment followed by solvent exchange. The obtained fibers were dispersed in epoxy resin (EP) by both mechanical stirring and ultrasonic techniques. The resulting blend was used as the matrix for glass-fiber (GF) composite fabrication using a prepreg method followed by multiple hot-press-curing steps. The morphology, mechanical characteristics and mode-I interlaminar fracture toughness of the fabricated composites were investigated. With a 0.3-wt% BC content, the mode-I interlaminar fracture toughness for both crack initiation and crack propagation were improved by 128.8% and 1110%, respectively. The fatigue life was dramatically extended by a factor of 12, relative to the unmodified composite. Scanning electron microscopy images revealed that the BC plays a vital role in increasing the interlaminar fracture toughness of a GF/EP composite via the mechanisms of crack reflection, debonding and fiber-bridging.  相似文献   

9.
Cellulose and lignocellulose nanofibrils were extracted from pistachio shells utilizing environmentally friendly pulping and totally chlorine-free bleaching. The extracted nanofibers were used to elaborate nanopaper, a continuous film made by gravimetric entanglement of the nanofibers and hot-pressed to enhance intramolecular bonding. The elaborated nanopapers were analyzed through their mechanical, optical, and surface properties to evaluate the influence of non-cellulosic macromolecules on the final properties of the nanopaper. Results have shown that the presence of lignin augmented the viscoelastic properties of the nanopapers by ≈25% compared with fully bleached nanopaper; moreover, the hydrophobicity of the lignocellulose nanopaper was achieved, as the surface free energy was diminished from 62.65 to 32.45 mNm−1 with an almost non-polar component and a water contact angle of 93.52°. On the other hand, the presence of lignin had an apparent visual effect on the color of the nanopapers, with a ΔE of 51.33 and a ΔL of −44.91, meaning a substantial darkening of the film. However, in terms of ultraviolet transmittance, the presence of lignin resulted in a practically nonexistent transmission in the UV spectra, with low transmittance in the visible wavelengths. In general, the presence of lignin resulted in the enhancement of selected properties which are desirable for packaging materials, which makes pistachio shell nano-lignocellulose an attractive option for this field.  相似文献   

10.
Moisture sorption decreases dimensional stability and mechanical properties of polymer matrix biocomposites based on plant fibers. Cellulose nanofiber reinforcement may offer advantages in this respect. Here, wood-based nanofibrillated cellulose (NFC) and bacterial cellulose (BC) nanopaper structures, with different specific surface area (SSA), ranging from 0.03 to 173.3 m2/g, were topochemically acetylated and characterized by ATR-FTIR, XRD, solid-state CP/MAS 13C-NMR and moisture sorption studies. Polymer matrix nanocomposites based on NFC were also prepared as demonstrators. The surface degree of substitution (surface-DS) of the acetylated cellulose nanofibers is a key parameter, which increased with increasing SSA. Successful topochemical acetylation was confirmed and significantly reduced the moisture sorption in nanopaper structures, especially at RH = 53 %. BC nanopaper sorbed less moisture than the NFC counterpart, and mechanisms are discussed. Topochemical NFC nanopaper acetylation can be used to prepare moisture-stable nanocellulose biocomposites.  相似文献   

11.
Polylactide (PLA)/cellulose nanofiber (CNF) biocomposites were prepared via solution casting and direct melt mixing. To improve the compatibility, a masterbatch of CNFs and poly(ethylene glycol) (PEG) (1:2) was also prepared. The effects of PEG on the morphology and properties of the biocomposites were investigated. The dispersion/distribution of nanofibers in PLA was improved when the masterbatch was used and the composites were prepared in solution. Substantial effects on the rheological properties of solution-prepared PLA/CNF/PEG composites were observed compared to composites containing no PEG, whereas for melt-prepared composites no significant changes were detected. Increased crystalline content and crystallization temperature were observed for the composites prepared via the masterbatch and solvent casting. The storage modulus of PLA was increased by 42 and 553% at 25 and at 80 °C, respectively, for the solution-based PEG-compatibilized composite containing 2 wt% nanofibers. Also, a better light transmittance was measured for the PLA/CNF/PEG composites prepared in solution.  相似文献   

12.
The hybrid inorganic/organic nanopapers based on bacterial cellulose and different type of sol–gel synthesized nanoparticles are fabricated. A simple, rapid, low-cost pathway based on a diffusion step of sol–gel nanoparticles into swollen bacterial cellulose membrane via orbital incubator is developed. This alternative pathway allows to keeping intact the 3D network of the bacterial cellulose membrane while sol–gel nanoparticles are formed in situ and anchored on the nanofibers surface. Titanium, vanadium oxide nanoparticles and a mixture of both are used to functionalize bacterial cellulose membrane. Fabricated hybrid inorganic/organic nanopapers are characterized by thermogravimetric analysis, X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, MTS mechanical testing, UV–vis spectroscopy, colorimeter and semiconductor analyzer. Synthesized photochromic hybrid nanopapers modified with vanadium and titanium oxide nanoparticles can find potential application as sensitive displays, biosensors and other optical devices.  相似文献   

13.
The applicability of phosphorus-containing reactive amine, which can be used in epoxy resins both as crosslinking agent and as flame retardant, was compared in an aliphatic and an aromatic epoxy resin system. In order to fulfil the strong requirements on mechanical properties of the aircraft and aerospace applications, where they are mostly supposed to be applied, carbon fibre-reinforced composites were prepared. The flame retardant performance was characterized by relevant tests and mass loss type cone calorimeter. Besides the flame retardancy, the tensile and bending characteristics and interlaminar shear strength were evaluated. The intumescence-hindering effect of the fibre reinforcement was overcome by forming a multilayer composite, consisting of reference composite core and intumescent epoxy resin coating layer, which proved to provide simultaneous amelioration of flame retardancy and mechanical properties of epoxy resins.  相似文献   

14.
The physical properties, such as the fibre dimension and crystallinity, of cellulose nanofibre (CNF) are significant to its functional reinforcement ability in composites. This study used supercritical carbon dioxide as a fibre bundle defibrillation pretreatment for the isolation of CNF from bamboo, in order to enhance its physical properties. The isolated CNF was characterised through zeta potential, TEM, XRD, and FT-IR analysis. Commercial CNF was used as a reference to evaluate the effectiveness of the method. The physical, mechanical, thermal, and wettability properties of the bamboo and commercial CNF-reinforced PLA/chitin were also analysed. The TEM and FT-IR results showed the successful isolation of CNF from bamboo using this method, with good colloidal stability shown by the zeta potential results. The properties of the isolated bamboo CNF were similar to the commercial type. However, the fibre diameter distribution and the crystallinity index significantly differed between the bamboo and the commercial CNF. The bamboo CNF had a smaller fibre size and a higher crystallinity index than the commercial CNF. The results from the CNF-reinforced biocomposite showed that the physical, mechanical, thermal, and wettability properties were significantly different due to the variations in their fibre sizes and crystallinity indices. The properties of bamboo CNF biocomposites were significantly better than those of commercial CNF biocomposites. This indicates that the physical properties (fibre size and crystallinity) of an isolated CNF significantly affect its reinforcement ability in biocomposites. The physical properties of isolated CNFs are partly dependent on their source and production method, among other factors. These composites can be used for various industrial applications, including packaging.  相似文献   

15.
Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 °C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young’s modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.  相似文献   

16.
Bionanocomposites with improved properties based on two microbial polysaccharides, pullulan and bacterial cellulose, were prepared and characterized. The novel materials were obtained through a simple green approach by casting water-based suspensions of pullulan and bacterial cellulose and characterized by TGA, RDX, tensile assays, SEM and AFM. The effect of the addition of glycerol, as a plasticizer, on the properties of the materials was also evaluated. All bionanocomposites showed considerable improvement in thermal stability and mechanical properties, compared to the unfilled pullulan films, evidenced by the significant increase in the degradation temperature (up to 40 °C) and on both Young’s modulus and tensile strength (increments of up to 100 and 50%, for films without glycerol and up to 8,000 and 7,000% for those plasticized with glycerol). Moreover, these bionanocomposite films are highly translucent and could be labelled as sustainable materials since they were prepared entirely from renewable resources and could find applications in areas as organic electronics, dry food packaging and in the biomedical field.  相似文献   

17.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

18.
通过UV界面聚合法,制备了以环状氯化磷腈为囊芯,丙烯酸酯共聚物为囊壁的阻燃微胶囊。对产物微胶囊的性质进行了系统表征,具体包括粒径及其分布、化学结构、表面形态和热稳定。结果表明:包囊提高了环状氯化磷腈的热稳定性、阻燃性,且对环氧复合材料的力学性能影响甚微。  相似文献   

19.
Accelerated weathering studies are necessary to determine future risks arising from the loss of durability of materials under environmental conditions (e.g. ultraviolet irradiation from the sun, moisture from rainfall, temperature cycling). The influence of different accelerated weathering conditions such as UV light and moisture on the properties of two epoxy resin systems incorporating microcrystalline cellulose (MCC) was evaluated. This study aimed to assess changes in chemical properties (FTIR), mechanical properties (tensile tests), thermal properties (TGA and DSC) and morphology (SEM) before and after accelerated weathering. The samples exposed to different accelerated weathering times (1, 2, 3, 4, and 6?months) were based on the diglycidyl ether of bisphenol A, DGEBA, or hydrogenated diglycidyl ether of bisphenol A, HDGEBA, with amine crosslinker (2,2,4-trimethyl-1,6-hexanediamine, TMDA) and 2% MCC. Incorporation of MCC improved thermal stability, reduced surface oxidation, and gave better retention of mechanical properties after accelerated weathering. Both epoxy resins and epoxy composites exhibited a reduction in the tensile strength upon accelerated weathering with the composites showing less reduction in the tensile strength after 6 months. The glass transition temperatures (Tg) before and after accelerated weathering were also measured. DGEBA-TMDA/2%MCC and HDGEBA-TMDA/2% MCC composites reduced the decrease in the Tg after accelerated weathering, compared to that of DGEBA-TMDA and HDGEBA-TMDA samples. Degradation primarily decreased the mechanical properties of the composites, with some damaged specimens showing on the surfaces of DGEBA-TMDA/2% epoxy composites and HGEBA-TMDA/2%MCC composites. Fewer morphological changes with limited voids were seen on the DGEBA epoxy interface for HDGEBA compared to DGEBA composite samples. Incorporation of 2%MCC in DGEBA-TMDA and HDGEBA-TMDA increased resistance to thermal degradation after accelerated weathering.  相似文献   

20.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号