首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulose reactivity of two lignocellulosic feedstocks, switchgrass and poplar, was evaluated under straight saccharification (SS) and simultaneous saccharification and fermentation (SSF) conditions following dilute sulfuric acid pretreatments designed for optimum xylose yields. The optimum pretreatment conditions, within the constraints of the experimental system (Parr batch reactor), were 1.2% acid, 180°C, and 0.5 min for switchgrass and 1% acid, 180°C, and 0.56 min for poplar. The cellulase enzyme preparation was from Trichoderma reesei and fermentations were done with Saccharomyces cerevisiae. Time courses for SS were monitored as the sum of glucose and cellobiose; those for SSF as the sum of glucose, cellobiose, and ethanol. Percentage conversions under SS conditions were 79.1% and 91.4% for the pretreated poplar and switchgrass feedstocks, respectively. Analogous values under SSF conditions were 73.0% and 90.3% for pretreated poplar and switchgrass, respectively.  相似文献   

2.
3.
4.
5.
Pretreatment and enzymatic saccharification of corn fiber   总被引:14,自引:0,他引:14  
Corn fiber consists of about 20% starch, 14% cellulose, and 35% hemicellulose, and has the potential to serve as a low-cost feedstock for production of fuel ethanol. Several pretreatments (hot water, alkali, and dilute, acid) and enzymatic saccharification procedures were evaluated for the conversion of corn fiber starch, cellulose, and hemicellulose to monomeric sugars. Hot water pretreatment (121°C, 1 h) facilitated the enzymatic sacch arification of starch and cellulose but not hemicellulose. Hydrolysis of corn fiber pretreated with alkali un dersimilar conditions by enzymatic means gave similar results. Hemicellulose and starch components were converted to monomeric sugars by dilute H2SO4 pretreatment (0.5–1.0%, v/v) at 121°C. Based on these findings, a method for pretreatment and enzymatic saccharification of corn fiber is presented. It in volves the pretreatment of corn fiber (15% solid, w/v) with dilute acid (0.5% H2SO4, v/v) at 121°C for 1 h, neutralization to pH 5.0, then saccharification of the pretreated corn fiber material with commercial cellulase and β-glucosidase preparations The yield of monomeric sugars from corn fiber was typically 85–100% of the theoretical yield. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

6.
7.
Pretreatment has been regarded as the most efficient strategy for conversion of lignocellulosic biomass to fermentable sugars. In this work, sulfolane pretreatment was performed to break the intricate structure of shrub willow for inhabitation of the enzymatic accessibility to holocellulose. The effects of varying pretreatment parameters on enzymatic hydrolysis of shrub willow were investigated. It was found that sulfolane was more compatible with lignin instead of carbohydrate, and the loss of carbohydrate could be attributed to water and acid generated from sulfolane. The optimum conditions leading to maximal sugar recovery from enzymatic saccharification were confirmed. After pretreatment of shrub willow powder in sulfolane at 170 °C for 1.5 h with mass ratio of sulfolane to substrate of 5, the sugar release could reach 555 mg/g raw materials (352 mg glucose, 203 mg xylose) when combining 20 FPU cellulase, 20 CBU β-glucosidase, and 1.5 FXU xylanase, representing 78.2 % of glucose and 56.6 % of xylose in shrub willow. This enhanced enzymatic saccharification was due to delignification and removal of a proportion of hemicelluloses, as confirmed by X-ray diffraction analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, gas chromatography, and ionic chromatography. Thus, these studies prove sulfolane pretreatment to be an effective and promising approach for biomass to biofuel processing.  相似文献   

8.
Partially purified S1 nuclease was bound through its carbohydrate moiety to Con A-Sepharose containing increasing amounts of lectin. The retention of activity was high, varying essentially from 75% on the "low lectin" matrix (1 mg Con A/mL of Sepharose), to no detectable activity on the "high lectin" matrix (8 mg Con A/mL of Sepharose). However, approximately 50% activity could be restored in "high lectin" matrix when the coupling was carried out in the presence of glucose, suggesting that the loss of activity on the "high lectin" matrix is caused by conformational changes brought about by the multiple attachment of the enzyme to the matrix. Interaction of Con A with S1 nuclease was used to predict the nature of carbohydrate moiety and its location with respect to the active site of the enzyme. Immobilization resulted in an increase in the optimum temperature, pH, and temperature stabilities, but it did not affect the pH optimum. A marginal increase in the apparent Km was observed. The bound enzyme also showed enhanced stability toward 8 M urea. On repeated use, the bound enzyme retained more than 80% of its initial activity after 6 cycles. These results are discussed taking into consideration the factors affecting immobilized enzymes. In addition, the potential use of immobilized S1 nuclease as an analytical tool is discussed.  相似文献   

9.
This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing duration. Wet pressing reduced substrate moisture content and produced irreversible reduction in fiber pore volume—fiber hornification—as reflected in reduced water retention values (WRVs), an easily measurable parameter, of the pressed substrates. Wet pressing resulted in a reduction in substrate enzymatic digestibility (SED) by approximately 20% for the two sulfite-pretreated substrates when moisture content was reduced from approximately 75% to 35%. The reduction in SED for the cellulosic substrate was less than 10% when its moisture content was reduced from approximately 65% to 35%. The results indicated that reduction in SED is negligible when samples were pressed to solids content of 40% but observable when pressed to solids content of 50%. It was also found that WRV can correlate to SED of hornified substrates resulting from the same never-dried or pressed sample independent of the hornification process (e.g., pressing or drying). This correlation can be fitted using a Boltzmann function. Cellulase adsorption measurements indicated that wet-pressing-induced fiber hornification reduced cellulose accessibility to cellulase. The results obtained in this study provide guidelines to high-solids enzymatic saccharification of pretreated biomass.  相似文献   

10.
Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider®. The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and enzymatic saccharification of fibrillated MSP and BSKP. Fibrillation of MSP and BSKP cell walls occurs rapidly and then levels off; further fibrillation has only limited effect on cell wall breakdown as measured by water retention value and cellulase adsorption. Complete (100 %) saccharification can be achieved at cellulase loading of 5 FPU/g glucan for BSKP after only 15 min fibrillation with energy input of 0.69 MJ/kg. However, the presence of lignin in MSP affects the extent of fibrillation producing fibrils mainly above 1 μm. Lignin binds nonproductively to cellulases and blocks cellulose thereby reducing its accessibility. As a result, the cellulose saccharification efficiency of MSP fibrils (6 h of fibrillation, energy input of 13.33 MJ/kg) was only 55 % at same cellulase loading of 5 FPU/g glucan.  相似文献   

11.
12.
13.
In an attempt to elucidate the effect of reduced mixing on the enzymatic hydrolysis of lignocellulosic feedstocks, a pretreated softwood substrate was hydrolyzed under various mixing regimes using a commercial cellulase mixture. The substrate was generated by SO2-catalyzed steam explosion of Douglas fir wood chips followed by alkali-peroxide treatment to remove lignin. Three mixing regimes were tested; continuous mixing at low (25 rpm) and high (150 rpm) speeds, and mixing at low-speed interspersed with 5-min intervals of high-speed agitation at 150 rpm. At both substrate concentrations (7.5 and 10% [w/w]), the mixed-speed mixing was able to produce sufficiently high conversion rates and yields (93% after 96 h), close or slightly better than those obtained under vigorous mixing (150 rpm). The low-speed shaking produced appreciably lower conversion yields at both levels of substrate concentration. Therefore, the mixed-speed regime may be a viable process option, because it does not seem to have an adverse impact on the cellulose conversion yield and can be an effective means of reducing the mixing energy requirements of an enzymatic hydrolysis process.  相似文献   

14.
Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxymonosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the pretreated substrate glucose content.  相似文献   

15.
The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance enzymatic cellulose saccharification despite LS can bind to cellulase nonproductively. The enhancing effect varies with LS properties, its loading, and hydrolysis pH. Inhibitive effect on cellulose saccharification was also observed using LS with large MW and low degree of sulfonation. The concept of “LS-cellulase aggregate stabilized and enhanced cellulase binding” was proposed to explain the observed enhancement of cellulose saccharification. The concept was demonstrated by the linear correlation between the measured amount of bound cellulase and saccharification efficiency with and without LS of different MW in a range of pH.  相似文献   

16.
A study is made of chlorination and bromination of 4, 6-diamino-s-triazines, with the following fluoro groups at position 2: CF3, CF2H, CFH2, CFClH, CClF2, and CFCl2. The reactions were carried out at 5–10° and with excess water (15–20 fold). A reaction mechanism is based on intermediate formation of hypochlorous and hypobromous acids, which then react with the amino group. It is shown that the hydrogen atoms are replaced stepwise. In all cases bromination is slower than chlorination, and the N-bromo-substituted compounds less stable than the corresponding chlorine ones. Free hydrogens in the fluoroalkyl radicals are substituted last of all.  相似文献   

17.
18.
19.
Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.  相似文献   

20.
This research examined several enzymatic and microbial process for the conversion of waste cellulosic fibers into ethanol. The first was a one-stage process in which pulp fines were contacted with commercial enzyme solutions. The second process used sequential, multistage saccharification. The third used sequential enzyme addition in a countercurrent mode. Experiments compared the results with various feed stocks, different commercial enzymes, supplementation with β-glucosidase, and saccharification combined with fermentation. The highest saccharification (65%) from a 4% consistency pulp and the highest sugar concentration (5.4%) from an 8% consistency pulp were attained when 5 FPU/g plus 10 IU/g of β-glucosidase were used. Sequential addition of enzyme to the pulp in small aliquots produced a higher overall sugar yield/U enzyme than the addition of the same total amount of enzyme in a singledose. In the saccharification and fermentation experiments, we produced 2.12% ethanol from a 5.4% sugar solution. This represents 78% of the theoretical maximum. This yield could probably be increased through optimization of the fermentation step. Even when little saccharification occurred, the enzyme facilitated separation of water, fiber, and ash, so cellulase treatment could be an effective means for dewatering pulp sludges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号