共查询到19条相似文献,搜索用时 75 毫秒
1.
2.
3.
5.
6.
7.
本文在77K和N2激光器3371谱线高密度激发的VPE ZnSe单晶膜上,首次得到了起因于自由激子与自由激子(Ex-Ex)散射的发光谱带(P带),理论拟合了该谱带的形状并讨论了它的发光特性。文中把在选择的VPE ZnSe外延单晶膜中得到P带的起因归结为这些ZnSe外延单晶膜的质量较高。 相似文献
8.
9.
10.
11.
12.
将Si衬底GaN基LED外延薄膜经晶圆键合、去硅衬底等工艺制作成垂直结构GaN基LED薄膜芯片,并对其进行不同温度的连续退火,通过高分辨X射线衍射(HRXRD)研究了连续退火过程中GaN薄膜芯片的应力变化。研究发现:垂直结构LED薄膜芯片在160~180℃下退火应力释放明显,200℃时应力释放充分,GaN的晶格常数接近标准值。继续升温应力不再发生明显变化,GaN薄膜的晶格常数只在标准晶格常数值附近波动。扫描电子显微镜给出的bonding层中Ag-In合金情况很好地解释了薄膜芯片应力的变化。 相似文献
13.
用MOCVD技术在硅衬底上生长了GaN基蓝光LED外延材料,研究了有源层多量子阱中垒的生长温度对发光效率的影响,获得了不同电流密度下外量子效率(EQE)随垒温的变化关系。结果表明,在860~915℃范围内,发光效率随着垒温的上升而上升。当垒温超过915℃后,发光效率大幅下降。这一EL特性与X光双晶衍射和二次离子质谱所获得的阱垒界面陡峭程度有明显的对应关系,界面越陡峭则发光效率越高。垒温过高使界面变差的原因归结为阱垒界面的原子扩散。垒温偏低使界面变差的原因归结为垒对前一个量子阱界面的修复作用和为后一个量子阱提供台阶流界面的能力偏弱。外延生长时的最佳垒温范围为895~915℃。 相似文献
14.
15.
16.
利用金属有机化合物气相外延沉积技术在2inch(5.08cm)Si(111)图形衬底上生长了GaN外延薄膜,在Al组分渐变AlGaN缓冲层与GaN成核层之间引入了AlN插入层,研究了AlN插入层对GaN薄膜生长的影响。结果表明,随着AlN插入层厚度的增加,GaN外延膜(002)面与(102)面X射线衍射摇摆曲线半峰全宽明显变小,晶体质量变好,同时外延膜在放置过程中所产生的裂纹密度逐渐减小直至不产生裂纹。原因在于AlN插入层的厚度对GaN成核层的生长模式有明显影响,较厚的AlN插入层使GaN成核层倾向于岛状生长,造成后续生长的nGaN外延膜具有更多的侧向外延成分,从而降低了GaN外延膜中的位错密度,减少了GaN外延膜中的残余张应力。同时还提出了一种利用荧光显微镜观察黄带发光形貌来表征GaN成核层形貌和生长模式的新方法。 相似文献
17.
18.
转移基板材质对Si衬底GaN基LED芯片性能的影响 总被引:3,自引:4,他引:3
在Si衬底上生长了GaN基LED外延材料,分别转移到新的硅基板和铜基板上,制备了垂直结构蓝光LED芯片。研究了这两种基板GaN基LED芯片的光电性能。在切割成单个芯片之前,对大量尺寸为(300μm×300μm)的这两种芯片分别通高达1 A的大电流在测试台上加速老化1 h。结果显示,铜基板Si衬底GaN基LED芯片有更大的饱和电流,光输出效率更高,工作电压随驱动电流的变化不大,光输出在老化过程中衰减更小。铜基板芯片比硅基板芯片可靠性更高,在大功率半导体照明器件中前景诱人。 相似文献
19.
J.H. Van Der Merwe 《Interface Science》1998,6(3):225-233
The present considerations are motivated by (i) the need to grow thin films with perfection in crystallinity and thickness uniformity, both of importance for purposes of device fabrication and the study of two-dimensional systems, and (ii) by the importance to understand the roles of vacuum and substrate proximity effects during the ultrathin growth stage, as these effects may be decisive in tailoring the final product. It is accepted (a) that the need is best served by growing epitaxially—a substrate proximity phenomenon—and (b) that the quality of epilayers depends greatly on the mode of misfit accommodation at the epilayer-substrate interface and on the mode of growth. In classical theoretical analyses of epitaxy, these modes are modeled in terms of the interfacial lattice misfit, the amplitudes of lateral variation of interfacial atomic interaction, defect energies of the bicrystal and the elastic properties of the epilayer. The aim of this paper is to report on and search for perspective of attempts to quantify—using embedded-atom method potentials—the effects of vacuum and substrate proximities on these modeling parameters. The objective is to focus attention on the fact that the ultrathin film values of these parameters may be significantly different from their bulk values, which have been employed in the past for predictive purposes. 相似文献