首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the spectral and kinetic characteristics of the luminescence of vapors of polyatomic molecules (anthracene, anthraquinone, fluorenone) initiated by selective IR multiphoton excitation (IR MPE) of molecules in the ground electronic state S 0 the relaxation processes proceeding under vibrational excitation of molecules to energies exceeding the energies of the lower excited electronic states have been investigated. The changes in the spectral and kinetic characteristics with increasing CO2 laser energy density and vapor P v and foreign gas pressure P FG are analyzed. They are similar to the characteristics obtained for normal fluorescence of these molecules with changing vibrational energy E vib content. On the basis of experimental data and model calculations it has been concluded that at the laser radiation densities used in the case of IR MPE the molecules reach energies considerably exceeding the energies of the electronic levels. It is shown that a nonadiabatic connection between the electronic states leads to the population of mixed electronic states isoenergetic to the vibrational levels of the ground electronic state and to emission of delayed luminescence spectrally identical to the normal luminescence of these molecules. It has been found that when high vibrational levels are populated, new relaxation channels, such as reverse electron relaxation, emission from high vibrational levels of the ground electronic state, and multiquantum vibrational energy transfer at collisions leading to a rapid establishment of vibrational equilibrium become important.  相似文献   

2.
By the pressure dependences of the decay rates of delayed fluorescence activated by vibrational excitation of triplet molecules of benzophenone and anthraquinone, the efficiencies of collisional transfer of vibrational energy (V–V-transfer) in the vibrational quasi-continuum of the triplet state have been estimated. It is shown that the efficiencies of the process in mixtures with foreign gases increase with increasing dipole moment and polarizability of colliding molecules. In the temperature range 433–513 K, we obtained an inverse temperature dependence of the V–V-transfer efficiency, which is satisfactorily described by empirical relations taking into account long-range attractive forces. The results obtained point to the determining role of long-range attractive forces in quasi-resonance V–V-transfer of vibrational energy by molecules excited in vibrational quasi-continuum.  相似文献   

3.
The vibrational kinetics of CW CO2 lasers has been analyzed within the framework of a temperature model. The necessity of taking into account the coupling of the vibrational modes of the CO2 molecule in determining the occupation numbers and the store of vibrational energy in individual modes is shown. Expressions that connect vibrational temperatures with the rates of excitation and relaxation of the lower vibrational levels of modes have been obtained. The ratios between the vibrational temperatures on selective excitation of the 00° 1 level and on excitation of CO2 molecules in an electric discharge as well as the character of the dependences of vibrational temperatures on the pumping-energy value are discussed.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 72–79, January–February, 2005.  相似文献   

4.
The absorption by O2–CO2 mixtures in the region of the oxygen A-band near 760 nm has been measured in the laboratory at room temperature and for total pressures up to about 80 atm. As done in our previous studies for O2–N2 mixtures the contribution of the “allowed” A-band transitions have been calculated both accounting for line-mixing effects and disregarding this process. The differences between computed spectra and measured values enable extraction of the collision induced absorption (CIA) contribution, which, after removal of the O2–O2 contribution, provides, for the first time, the O2–CO2 CIA. It is shown that neglecting line-mixing overestimates absorption in the wings and underestimates absorption at the P and R branch peaks, and that the O2–CO2 CIA has an integrated intensity, in the A-band region, about 1.5 times larger than that of for pure O2 and almost 10 times greater than for O2–N2.  相似文献   

5.
It is shown that the optimum ratio between the main components CO2:N2:He of the active medium of continuous-wave electric-discharge CO2 lasers depends on the temperature of the active medium. Continuous-wave CO2 lasers can operate effectively at high temperatures of their active medium (T 1000 K) if in their composition the fraction of N2 molecules is increased as compared to the fraction of CO2 molecules (CO2:N2 < 1:15) and the fraction of He atoms is decreased (He n< CO2 + N2).  相似文献   

6.
Generation dynamics of a two-wave CO2 laser with excitation by a continuous electric discharge and with modulation of losses in one of the channels is investigated theoretically and experimentally. It is shown that by changing the frequency and depth of modulation of a variable component of losses and also the relationship between the constant components of losses one can control, over rather wide limits, the shape, duration, and peak power of radiation pulses in the active and passive channels.  相似文献   

7.
Abstract

A complete vibrationalassignment of the title compounds is performed from their IR and Raman Spectra. A normal coordinate treatment of these molecules based on a simplified model allow us to confirm most of the experimental assignments.

A comparison of some structural aspects of these complexes with Cp?Re(CO)3 are also discussed. Additionally, the preparation and characterization of the trimethylphosphite derivative is reported.  相似文献   

8.
Measurement ofT2G, the Gaussian component of the spin-echo envelope of planar Cu nuclei in high-temperature superconductors, gives important information about the real part of the Cu electron spin susceptibility. In the traditional picture of the planar Cu echo decay, the internuclear coupling is assumed to remain static with respect to spin–lattice relaxation and mutual exchange fluctuations. In some circumstances, however, this assumption breaks down. We calculate the internuclear corrections arising from spin–lattice relaxation to the conventional theory ofT2Gand show thatT2Gcan be easily corrected for these effects. We argue that mutual exchanges due to the perpendicular indirect couplings are suppressed in these materials. For YBa2Cu4O8, we find a correction on the order of 10% inT2Gand using the corrected values we find that the isotope ratio63T2G/65T2Gagrees with theory.  相似文献   

9.
In this study, the displacement processes were observed as gaseous or supercritical CO2 was injected into n-decane-saturated glass beads packs using a 400-MHz magnetic resonance imaging (MRI) system. Two-dimensional images of oil distribution in the vertical median section were obtained using a spin-echo pulse sequence. Gas channeling and viscous fingering appeared obviously in immiscible gaseous CO2 displacement. A piston-like displacement front was detected in miscible supercritical CO2 displacement that provided high sweep efficiency. MRI images were processed with image intensity analysis methods to obtain the saturation profiles. Final oil residual saturations and displacement coefficients were also estimated using this imaging intensity analysis. It was proved that miscible displacement can enhance the efficiency of CO2 displacement notably. Finally, a special coreflood analysis method was applied to estimate the effects of capillary, viscosity and buoyancy based on the obtained saturation data.  相似文献   

10.
G L Bhale  N A Narasimham 《Pramana》1976,7(5):324-333
TheA 2 Π ustate of O2 + was earlier established as an inverted state contrary to previous assumptions. The rotational analysis of a few more bands of theA-X system of O2 + has now been completed. These studies show that the spin-orbit coupling constantA in theA 2 Π ustate gradually varies with the vibrational quantum numberν and is found to be positive forν⩾6. It has also been observed that the spia-rotation interaction is not negligible in theA 2 Π ustate. The spin splitting constantγ is reported for various vibrational levels of this electronic state.  相似文献   

11.
12.
ABSTRACT

In this work, a quadrupolar cubic plus association (qCPA) equation of state is evaluated for its ability to predict the phase equilibria of multicomponent mixtures containing CO2 and alkanes, alcohols, and/or water. A single binary interaction parameter is employed in qCPA for all binary combinations. All parameters are based solely on pure fluid or binary mixture data and multicomponent data are used only to evaluate the predictions. The performance of qCPA is, for all mixtures, compared to CPA where CO2 is considered to be either non-associating (inert), solvating or self-associating. In the latter two approaches, an additional adjustable parameter is employed for binary pairs of CO2 and an associating compound. The results show that the predictions with qCPA are very similar to the best performing CPA approaches, even though the model uses fewer adjustable binary parameters. The predictions with qCPA and the best CPA approaches are typically satisfactory and predict the general behaviour of the systems. As expected, qCPA and CPA with solvation or association typically performs better than inert CPA for two- and three phase vapour–liquid and vapour–liquid–liquid equilibria. However, inert CPA yields the best results of all the models for the prediction of dew point pressures.  相似文献   

13.
Pressure-induced foreign-broadening lineshape parameters of the carbon dioxide rovibrational transitions belonging to the (30012)←(00001) overtone band near the 1.573 μm wavelength region are measured by using a tunable diode laser photoacoustic spectrometer. The spectroscopic analysis has concerned the first 11 lines of the R branch. For these lines, the air- and Ar-broadening coefficients are measured at room temperature (∼298 K). The measured broadening coefficients of all the transitions of 12C16O2 are compared with those given in the HITRAN04 database and former measurements with a different spectroscopic method. Agreements and discrepancies are underlined and briefly discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficient of carbon dioxide transitions.  相似文献   

14.
Enhancement spectra of the collision-induced absorption (CIA) in the first overtone region 5000-7000 cm−1 of D2 in D2-N2 were studied at 298 K for a base density of D2 of 73 amagat and for partial densities of N2 in the range 150-370 amagat. The observed spectra were modeled with a total of 1176 components of double vibrational transitions. Binary and ternary absorption coefficients were determined from the integrated absorption of the band. Profile analysis of the spectra was carried out using the Birnbaum-Cohen line-shape function for the individual components of the band, and characteristic line-shape parameters were determined from the analysis. Good agreement was obtained between the experimental and calculated spectral profiles.  相似文献   

15.
The spin Hamiltonian parameters (SHPs) and the local structures for impurity W5+ in the Zn3(PO4)2ZnO nanopowders doped with WO3 under different concentrations are theoretically investigated using the perturbation calculations of these parameters. The exponential functions of the related quantities (cubic field parameter Dq, covalency factor N, relative tetragonal compression ratio τ and core polarisation constant κ) of concentration x with totally four adjustable coefficients a, b, c and d are adopted to fit the concentration dependences of the experimental d-d transition bands and SHPs. The impurity W5+ centres demonstrate moderate tetragonal compression ratios τ (~3.1%) due to the Jahn–Teller effect. With the increase of WO3 concentration, Dq and N show moderately decreasing rules, while τ and κ exhibit slightly and moderately increasing tendencies with x, respectively. The mechanisms of the above concentration dependences of these quantities are analysed from the modifications of the local crystal-field strength and electron cloud density around the impurity W5+ with the variation of x. Present theoretical studies would be useful to the exploration of the structural properties and optical applications for WO3 doped Zn3(PO4)2ZnO nanopowders.  相似文献   

16.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

17.

Object

Quantitative T2 measurement is applied in cardiac Magnetic Resonance Imaging (MRI) for the diagnosis and follow-up of myocardial pathologies. Standard Electrocardiogram (ECG)-gated fast spin echo pulse sequences can be used clinically for T2 assessment, with multiple breath-holds. However, heart rate is subject to physiological variability, which causes repetition time variations and affects the recovery of longitudinal magnetization between TR periods.

Materials and methods

The bias caused by heart rate variability on quantitative T2 measurements is evaluated for fast spin echo pulse sequence. Its retrospective correction based on an effective TR is proposed. Heart rate variations during breath-holds are provided by the ECG recordings from healthy volunteers. T2 measurements were performed on a phantom with known T2 values, by synchronizing the sequence with the recorded ECG. Cardiac T2 measurements were performed twice on six volunteers. The impact of T1 on T2 is also studied.

Results

Maximum error in T2 is 26% for phantoms and 18% for myocardial measurement. It is reduced by the proposed compensation method to 20% for phantoms and 10% for in vivo measurements. Only approximate knowledge of T1 is needed for T2 correction.

Conclusion

Heart rate variability may cause a bias in T2 measurement with ECG-gated FSE. It needs to be taken into account to avoid a misleading diagnosis from the measurements.  相似文献   

18.
In the electronic emission spectrum of the 12C16O+ molecule, 11 bands of the Comet-Tail (A2Πi-X2Σ+) system have been recorded and analyzed. Spin splitting in most of the observed lines of the 0-2, 1-0, 2-0, 2-1, 3-0, 4-0, 4-2, 6-0, 7-0, 7-1, and 8-1 bands, comprising nearly 3400 lines, has been recorded under high resolution by conventional spectroscopy. The rotational analysis of bands has been performed by nonlinear least-squares procedures and by means of effective Hamiltonians of Brown et al. and the rovibronic structure parameters have been obtained. The data of bands of the A-X system and earlier analyzed bands of the B-X and B-A systems have been merged together. As a result of this global fit, the state of information about the energy structure has been significantly enlarged for the A state and enlarged and improved for the X state. Also RKR potential curves for both states and Franck-Condon factors as well as r-centroids of the Comet-Tail system of CO+ have been calculated.  相似文献   

19.
Using the methods of emission spectroscopy, we studied the influence of generated radiation on heating the active medium of a fast-flow electric-discharge CO2 laser.  相似文献   

20.
Institute of Molecular and Atomic Physics, Academy of Sciences of Belarus, 70 F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Specktroskopii, Vol. 62, No. 6, pp. 81–86, November–December, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号