首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction for SiH3+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The single point calculations for all the stationary points were carried out at the QCISD(T) /6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major pathway is the SiH3+O(3P)→IM1→TS3→IM2→TS8→HOSi+H2. The other minor products include the HSiOH+H, H2SiO+H and HSiO+H2. Furthermore, the products HOSi, HSiO and HSiOH(cis) can undergo dissociation into the product SiO. In addition, the calculations provide a possible interpretation for disagreement about the mechanism of the reaction SiH4+O(3P). It suggests that the products HSiOH, H2SiO and SiO observed by Withnall and Andrews are produced from the secondary reaction SiH3+O(3P) and not from the reaction SiH4+O(3P).  相似文献   

2.
Substituted methylidenecyclopropanes 12a – d , being easily available from 1,1-dibromo-2-(phenylthio)-cyclopropane ( 9a ), are attractive precursors of triafulvene (2-methylidene-1-cyclopropene; 1 ). Both the sulfoxide 12b and the sulfone 12c react with an excess of alkoxides (t-BuOK and NaOMe) to give 12e and 12f , respectively, while the sulfinyl group of 12b may be replaced by the PhCH2S substituent in the presence of PhCH2SH/t-BuOK. These reactions (Scheme 4) may be explained by assuming 1 as a reactive intermediate, although an alternative sequence including carbene 20 (Scheme 6) is not completely ruled out. D -labelling experiments (Scheme 5) do not give conclusive evidence due to D scrambling, but deprotonation/methylation sequences show that H? C(2) of 12a – c is the most acidic proton. Final evidence for 1 results from the reaction of 12d with cyclopentadienide (Scheme 7): the reaction of 1 with cyclopentadiene produces the expected [4 + 2]-cycloaddition product 23 , while some mechanistic insight results from the sequence 12d → 24 → 25 .  相似文献   

3.
The o-quinoid 8π electron system 2 , generated by thermal ring opening of benzothiete ( 1 ), enters regio-specific [8π + 2π] cycloaddition reactions with electron-deficient nitriles 3a-d , yielding the 4H-1,3-benzothiazines 4a-d. A competitive dimerization of 1 leads to 1,5-dibenzo[b,f]dithiocin (5). Depending on the nitrile further competitive or subsequent reactions (2 + 3b → 7b, 2 + 3d → 4d → 8d) can occur. The cycloadducts 10e and 11e gained from 3e anticipate a primary cleavage of 3e to methylisothiocyanate 9e which reacts at the C?N double bond as well as at the C?S double bond.  相似文献   

4.
在B3LYP/6-311 + G(2d, 2p)水平上计算了MgO + CH_4 → Mg+CH_3OH反应的 单态势能曲线。结果发现MgO和CH_4发生相互作用,首先形成两种类型的分子-分子 复合物(MgOCH_4和OMgCH_4);分子-分子复合物OMgCH_4能发生进一步转化,即 MgO插入到CH_4的C-H键中,产生中间体HOMgCH_3,此中间体在本反应中是能量上最 稳定的构型;它还有可能进一步发生反应,产生原子-分子复合物MgCH_3OH,但其 活化能太高,为299.8kJ·mol~(-1),是整个反应的速率控制步骤;最后一步是 MgCH_3OH放出CH_3OH分子,整个反应放热146.1 kJ·mol~(-1)。  相似文献   

5.
The pyrolyses of phenol and d(5)-phenol (C(6)H(5)OH and C(6)D(5)OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C(6)H(5)OH → c-C(6)H(6) = O → c-C(5)H(6) + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C(5)H(6) → c-C(5)H(5) + H → HC≡CH + HCCCH(2). At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C(6)H(5)O-H → C(6)H(5)O + H → c-C(5)H(5) + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C(6)H(4)-OH) and hydroquinone (p-HO-C(6)H(4)-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.  相似文献   

6.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

7.
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6‐311+G(d,p) level. To gain further mechanistic knowledge, higher‐level single‐point calculations for the stationary points are performed at the QCISD(T)/6‐311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition–elimination, carbonyl carbon addition–elimination, and side oxygen addition–elimination. Our calculations demonstrate that R→IM1→TS3→P3: CH2CN + CO is the energetically favorable channel; however, channel R→IM2→TS4→P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

8.
The highly reactive silicon congeners of cyclopropene, cyclotrisilenes (c‐Si3R4), typically undergo either π‐addition to the Si=Si double bond or σ‐insertion into the Si?Si single bond. In contrast, treatment of c‐Si3Tip4 (Tip=2,4,6‐iPr3C6H2) with styrene and benzil results in ring opening of the three‐membered ring to formally yield the [1+2]‐ and [1+4] cycloaddition product of the isomeric disilenyl silylene to the C=C bond and the 1,2‐diketone π system, respectively. At elevated temperature, styrene is released from the [1+2]‐addition product leading to the thermodynamically favored housane species after [2+2] cycloaddition of styrene and c‐Si3Tip4.  相似文献   

9.
A new approach is presented for performing geometry optimization for stationary points on potential energy hypersurfaces with equality constraints on the internal coordinates of a polyatomic system. The working equations are the same as for unconstrained Newton–Raphson optimization in Cartesian coordinates except that projection operators are applied to the gradient and Hessian to enforce the constraints. Two reactive systems with different kinds of constraints are treated as examples: OH + H2 → OH → H2O + H with one constrained OH bond distance and CH3 + H2 → CH → CH4 + H with one constrained H? C? H bond angle in the CH3 group or with one constrained bond distance and one simultaneously constrained bond angle. In each case we optimized all reactants and products as well as the saddle point, all subject to the constraints.  相似文献   

10.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

11.
To probe photoinduced water oxidation catalyzed by the Mn?O?L? cubane clusters, we have computationally studied the mechanism and controlling factors of the O? formation from the [Mn?O?L?] catalyst, 6. It was demonstrated that dissociation of an L = H?PO?? ligand from 6 facilitates the direct O-O bond formation that proceeds with a 28.3 (33.4) kcal/mol rate-determining energy barrier at the transition state TS1. This step (the O-O single bond formation) of the reaction is a two-electron oxidation/reduction process, during which two oxo ligands are transformed into to μ2:η2-O?2? unit, and two ("distal") Mn centers are reduced from the 4+ to the 3+ oxidation state. Next two-electron oxidation/reduction occurs by "dancing" of the resulted O?2? fragment between the Mn1 and Mn2/Mn(2')-centers, keeping its strong coordination to the Mn(1')-center. As a result of this four-electron oxidation/reduction process Mn centers of the Mn?-core of I transform from {Mn1(III)-Mn(1')(III)-Mn2(IV)-Mn(2')(IV)} to {Mn1(II)-Mn(1')(II)-Mn2(III)-Mn(2')(III)} in IV. In other words, upon O? formation in cationic complex [Mn?O?L?](+), I, all four Mn-centers are reduced by one electron each. The overall reaction I → TS1 → II → III → TS2 → IV → TS3 → V → VI + O? is found to be exothermic by 15.4 (10.5) kcal/mol. We analyze the lowest spin states and geometries of all reactants, intermediates, transition states, and products of the targeted reaction.  相似文献   

12.
HNCO is a convenient photolytic source of NCO and NH radicals for laboratory kinetics studies of elementary reaction[1] and plays an important role in the combustion and atmosphere chemistry. It can re- move deleterious compounds rapidly from exhausted ga…  相似文献   

13.
Heats of reaction and barrier heights have been computed for H + CH2CH2 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH using unrestricted Hartree-Fock and Møller–Plesset perturbation theory up to fourth order (with and without spin annihilation), using single-reference configuration interaction, and using multiconfiguration self-consistent field methods with 3-21G, 6-31G(d), 6-31G(d,p), and 6-311G(d,p) basis sets. The barrier height in all three reactions appears to be relatively insensitive to the basis sets, but the heats of reaction are affected by p-type polarization functions on hydrogen. Computation of the harmonic vibrational frequencies and infrared intensities with two sets of polarization functions on heavy atoms [6-31G(2d)] improves the agreement with experiment. The experimental barrier height for H + C2H4 (2.04 ± 0.08 kcal/mol) is overestimated by 7?9 kcal/mol at the MP2, MP3, and MP4 levels. MCSCF and CISD calculations lower the barrier height by approximately 4 kcal/mol relative to the MP4 calculations but are still almost 4 kcal/mol too high compared to experiment. Annihilation of the largest spin contaminant lowers the MP4SDTQ computed barrier height by 8?9 kcal/mol. For the hydrogen addition to formaldehyde, the same trends are observed. The overestimation of the barrier height with Møller-Plesset perdicted barrier heights for H + C2H4 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH at the MP4SDTQ /6-31G(d) after spin annihilation are respectively 1.8, 4.6, and 10.5 kcal/mol.  相似文献   

14.
Diaminocyclopropenylium salts 14a,b react specifically with the phosphorylated diazomethanes 15a-e in dichloromethane in the presence of ethyl diisopropylamine and 1,5-diazabicyclo[4.3.0]non-5-ene respectively to the 4,5-diaminopyridazines 16a-f. In contrast to that the 3,4-diaminopyridazines 17a-i are formed in the reaction of the salt 14c with the diazomethyl compounds 15a,c,d such as f-k in dichloromethane in the presence of the bicyclic base. With regard to the reaction mechanism the formation of the intermediate diazomethyl cyclopropenes ( 14a,b + 15 → 18 or 14c + 15 → 19 ) has to be interpreted in the sense of an electrophilic diazoalkane substitution reaction; neither 18 nor 19 can be isolated but undergo a fast [1,5]-cyclization to the betaines 20 or 21 , which finally isomerize to the pyridazines 16 or 17 by opening of the bridge bond.  相似文献   

15.
The gas‐phase reactions between Pt and NH3 have been investigated using the relativistic density functional approach (ZORA‐PW91/TZ2P). The quartet and doublet potential energy surfaces of Pt + NH3 have been explored. The minimum energy reaction path proceeds through the following steps: Pt(4Σu) + NH3 → q‐1 → d‐2 → d‐3 → d‐4 → d‐Pt2NH+ + H2. In the whole reaction pathway, the step of d‐2 → d‐3 is the rate‐determining step with a energy barrier of 36.1 kcal/mol, and exoergicity of the whole reaction is 12.0 kcal/mol. When Pt2NH+ reacts with NH3 again, there are two rival reaction paths in the doublet state. One is degradation of NH and another is loss of H2. In the case of degradation of NH, the activation energy is only 3.4 kcal/mol, and the overall reaction is exothermic by 8.9 kcal/mol. Thus, this reaction is favored both thermodynamically and kinetically. However, in the case of loss of H2, the rate‐determining step's energy barrier is 64.3 kcal/mol and the overall reaction is endothermic by 8.5 kcal/mol, so it is difficult to take place. Predicted relative energies and barriers along the suggested reaction paths are in reasonable agreement with experimental observations. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
The photoaddition, hydrolysis, retro-aldol sequences 1 → 2 → 3 and 4 → 5 + 6 → 7 proceeded in high yield and in a regiospecific manner. However, the enol acetate 8 on irradiation furnished the tricyclic ketoacetate 9 as the major product, presumably by a hydrogen shift in the intermediate diradical 11 . Hydrolysis of the minor photoadduct 10 gave the dione 13 .  相似文献   

17.
γ-Selective sulfenylation of the triethysilyloxypentadienyllithium 1 gave the versatile alkylthiodene 4 which on successive deprotonation and alkylation furnished with high regioselectivity the γ-products 6 . Fluoride-promoted silylether cleavage 6 → 7 may be followed by intramolecular [4 + 2]-addition 7c → 8 and sulfoxide elimination 8 → 9 . The conversions 7b → 12 and 7a → 17 demonstrate the feasibility of 5 to serve as an equivalent of the hypothetical β-deprotonated divinylketone 13 whose two enone units may be unmasked separately.  相似文献   

18.
Details on the reactions of: (1) Pd+ + CH3CHO → PdCO+ + CH4 and (2) Pd+ + CH3CHO → PdH + CH3CO+ in the gas phase were investigated using density functional theory (B3LYP), in conjunction with the LANL2DZ+6‐311+G(d) basis set. Three encounter complexes were located on the potential energy surfaces and the calculations indicated that both the C? C and aldehyde C? H bond activation of acetaldehyde could lead to the dominant demethanation reaction. The charge transfer process for PdH abstraction was caused by an intramolecular PdH rearrangement of the newly found η1‐aldehyde attached complex. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The reaction SO + SO →l S + SO2(2) was studied in the gas phase by using methyl thiirane as a titrant for sulfur atoms. By monitoring the C3H6 produced in the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm S} + {\rm CH}_3\hbox{---} \overline {{\rm CH\hbox{---}CH}_2\hbox{---} {\rm S}} \to {\rm S}_2 + {\rm C}_3 {\rm H}_6 (7) $\end{document}, we determined that k2 ? 3.5 × 10?15 cm3/s at 298 K.  相似文献   

20.
Ab initio CCSD(T)/CBS//B3LYP/6-311G** calculations of the potential energy surface for possible dissociation channels of the phenyl radical are combined with microcanonical Rice-Ramsperger-Kassel-Marcus calculations of reaction rate constants in order to predict statistical product branching ratios in photodissociation of c-C(6)H(5) at various wavelengths. The results indicate that at 248 nm the photodissociation process is dominated by the production of ortho-benzyne via direct elimination of a hydrogen atom from the phenyl radical. At 193 nm, the statistical branching ratios are computed to be 63.4%, 21.1%, and 14.4% for the o-C(6)H(4) + H, l-C(6)H(4) ((Z)-hexa-3-ene-1,5-diyne) + H, and n-C(4)H(3) + C(2)H(2) products, respectively, in a contradiction with recent experimental measurements, which showed C(4)H(3) + C(2)H(2) as the major product. Although two lower energy pathways to the i-C(4)H(3) + C(2)H(2) products are identified, they appeared to be kinetically unfavorable and the computed statistical branching ratio of i-C(4)H(3) + C(2)H(2) does not exceed 1%. To explain the disagreement with experiment, we optimized conical intersections between the ground and the first excited electronic states of C(6)H(5) and, based on their structures and energies, suggested the following photodissociation mechanism at 193 nm: c-C(6)H(5) 1 → absorption of a photon → electronically excited 1 → internal conversion to the lowest excited state → conversion to the ground electronic state via conical intersections at CI-2 or CI-3 → non-statistical decay of the vibrationally excited radical favoring the formation of the n-C(4)H(3) + C(2)H(2) products. This scenario can be attained if the intramolecular vibrational redistribution in the CI-2 or CI-3 structures in the ground electronic state is slower than their dissociation to n-C(4)H(3) + C(2)H(2) driven by the dynamical preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号