首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] Treatment of salvinorin A (1a) with KOH in MeOH gave the enedione 3, for which the dienone structure 7 was recently proposed. Also isolated, after methylation, were the secotriesters 4a-c. A mechanism for this unusual series of autoxidations is proposed. Surprisingly, 4a showed weak affinity at the kappa-opioid receptor. Divinatorins A-C (2a-c) showed no affinity at opioid receptors. Attempted reduction of 3 to a novel salvinorin diol (9d) was unsuccessful, but careful deacetylation of salvinorin C (9a) provided a viable route to this compound. A general method for identifying salvinorin 8-epimers by TLC is also presented.  相似文献   

2.
Ma Z  Deng G  Lee DY 《Tetrahedron letters》2010,51(39):5207-5209
Salvinorin A is a naturally occurring potent and selective kappa opioid receptor agonist, and smoking salvinorin A produces the most intense hallucinogenic effects in human. Eight neoclerodane diterpene derivatives were isolated from the smoke of salvinorin A, and their structures were identified by spectroscopic methods. The major structural changes include epimerizations, eliminations, and rearrangements.  相似文献   

3.
采用分子对接和分子动力学(MD)模拟方法研究了芬太尼类化合物与阿片μ受体的相互作用机制.先用AutoDock4.0程序将芬太尼类化合物对接到同源模建的阿片μ受体结构中,再用GROMACS程序包在水溶液体系中分别对12个芬太尼激动剂和阿片μ受体蛋白复合物进行了MD模拟研究,优化对接复合物的结构,最后利用MM-PBSA方法,在APBS程序中计算芬太尼类衍生物与阿片μ受体的结合自由能,计算出的受体配合物结合常数(Ki)与其实验值吻合较好,并预测了化合物的活性排序.结果表明,复合物蛋白结构与空载受体蛋白结构有较大差异,特别是胞内区IL2、IL3和跨膜区段TM4骨架构象变化较大,不同的化合物对受体结构影响也有差异,活性较好的化合物会增加蛋白特定区域结构的柔性.芬太尼类化合物可能是通过和受体结合后诱导阿片μ受体构象转变为活性构象,引起一系列的信号传导激活G蛋白,从而引发生理效应.  相似文献   

4.
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.  相似文献   

5.
Introduction Theintroductionof2′,6′dimethyl L tyrosine(Dmt)[1]attheN terminusofTyr Tic(1,2,3,4tetra hydroisoquinoline3carboxylicacid)containingδopi oidantagonists[2—8]enhancesreceptoraffinityand invitrobioactivitytoseveralordersofmagnitude[1]and itsap…  相似文献   

6.
Zhongze Ma 《Tetrahedron letters》2008,49(11):1782-1785
To unambiguously confirm the actual product in autoxidation of salvinorin A under basic conditions, deacetyl-1,10-didehydrosalvinorin G was synthesized from salvinorin C via intermediate salvinorin H. Furthermore, oxidation of salvinorin D with manganese dioxide gave salvinorin G in good yield.  相似文献   

7.
The μ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of μ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and β-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human μ-opioid receptor.  相似文献   

8.
Combined ligand-based and target-based drug design approaches provide a synergistic advantage over either method individually. Therefore, we set out to develop a powerful virtual screening model to identify novel molecular scaffolds as potential leads for the human KOP (hKOP) receptor employing a combined approach. Utilizing a set of recently reported derivatives of salvinorin A, a structurally unique KOP receptor agonist, a pharmacophore model was developed that consisted of two hydrogen bond acceptor and three hydrophobic features. The model was cross-validated by randomizing the data using the CatScramble technique. Further validation was carried out using a test set that performed well in classifying active and inactive molecules correctly. Simultaneously, a bovine rhodopsin based “agonist-bound” hKOP receptor model was also generated. The model provided more accurate information about the putative binding site of salvinorin A based ligands. Several protein structure-checking programs were used to validate the model. In addition, this model was in agreement with the mutation experiments carried out on KOP receptor. The predictive ability of the model was evaluated by docking a set of known KOP receptor agonists into the active site of this model. The docked scores correlated reasonably well with experimental pK i values. It is hypothesized that the integration of these two independently generated models would enable a swift and reliable identification of new lead compounds that could reduce time and cost of hit finding within the drug discovery and development process, particularly in the case of GPCRs.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
An unnatural amino acid, β-[6′-(N, N-dimethyl)amino-2′-naphthoyl]alanine (Ald) showing polarity-sen sitive fluorescence characteristics, was synthesized. A thorough Ald-scan of dynorphin A (Dyn A), the putative endogenous ligand for κ opioid receptors, was then performed. Replacement of the amino acid residues in positions 5, 8, 10, 12 or 14 of Dyn A(1-13)-NH2 with Ald resulted in compounds that had almost equal κ binding affinity compared with that of the parent compound; on the other hand, substi-tution o...  相似文献   

10.
A pharmacophore for μ-opioid receptor recognition based on a study of the fentanyl class of opioids has recently been characterized in our laboratories. To validate this pharmacophore, we have extended our theoretical studies to include four opiate analogs from structurally different classes and with high affinity but varying selectivity for the μ-opiate receptor. An extensive conformational search of the flexible regions of these compounds has been carried out at two levels of approximations, using the CHARMm force field and the semiempirical molecular orbital method AM 1. In a subsequent step, we have determined a series of structural, environmental, and electronic properties for each low-energy conformer of the analogs studied. All four analogs studied can assume a low-energy conformation in which at least three of the four stereoelectronic properties identified as modulators of recognition in the fentanyls are present in the same spatial arrangement. These results provide additional evidence for the plausibility of the proposed pharmacophore for μ–opioid receptor recognition. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
Smoking of Salvia divinorum leaves is the most common method for its psychotropic effects. Eleven thermal degradation products, including a new neoclerodane diterpene derivative, were isolated from the smoke of S. divinorum leaves, and their structures were identified by spectroscopic methods. The isolated compounds were evaluated for their binding affinities at the opioid receptors, and salvinorin A is still the most potent kappa opioid receptor agonist.  相似文献   

12.
The complete assignments of the (1)H and (13)C NMR spectra of the hallucinogenic neoclerodane diterpenoid salvinorin A were determined in three different NMR solvents using HSQC, HMBC and COSY. Solvent systems are described that allow the resolution of all (1)H signals. Virtual coupling was observed for the protons at C-2, C-3 and C-4 in the 600 MHz (1)H spectrum in CDCl(3). The complete assignments of the (1)H and (13)C NMR spectra of salvinorin B are also reported.  相似文献   

13.
Photoswitchable ligands as biological tools provide an opportunity to explore the kinetics and dynamics of the clinically relevant μ-opioid receptor. These ligands can potentially activate or deactivate the receptor when desired by using light. Spatial and temporal control of biological activity allows for application in a diverse range of biological investigations. Photoswitchable ligands have been developed in this work, modelled on the known agonist fentanyl, with the aim of expanding the current “toolbox” of fentanyl photoswitchable ligands. In doing so, ligands have been developed that change geometry (isomerize) upon exposure to light, with varying photophysical and biochemical properties. This variation in properties could be valuable in further studying the functional significance of the μ-opioid receptor.  相似文献   

14.
Polymers having hemiacetal ester moieties in the side chain were synthesized and their thermal dissociation was examined. 1‐Alkoxyethyl methacrylates (1) were synthesized from methacrylic acid with alkyl vinyl ethers and their radical copolymerizations with butyl methacrylate were carried out at 80°C for 6.5 h using AIBN as an initiator to afford the corresponding copolymers having the hemiacetal ester moieties in the side chain. The hemiacetal ester moieties in the copolymers thermally converted to carboxyl groups with elimination of the corresponding vinyl ethers. The thermal dissociation of the hemiacetal ester moieties in the side chain obeyed first‐order kinetics at 140°C, and their reactivities were in the following order: 1‐(tert‐butoxy)ethyl > 1‐isopropoxyethyl > 1‐ethoxyethyl > 1‐butoxyethyl ester. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 609–614, 1999  相似文献   

15.
Salvia divinorum is widely cultivated in the US, Mexico, Central and South America and Europe and is consumed for its ability to produce hallucinogenic effects similar to those of other scheduled hallucinogenic drugs, such as LSD. Salvinorin A (SA), a kappa opiod receptor agonist and psychoactive constituent, is found primarily in the leaves and to a lesser extent in the stems of the plant. Herein, the analysis of intact S. divinorum leaves for SA and of acetone extracts separated using thin layer chromatography (TLC) is demonstrated using desorption electrospray ionization (DESI) mass spectrometry. The detection of SA using DESI in the positive ion mode is characterized by several ions associated with the compound – [M+H]+, [M+NH4]+, [M+Na]+, [2M+NH4]+, and [2M+Na]+. Confirmation of the identity of these ions is provided through exact mass measurements using a time‐of‐flight (ToF) mass spectrometer. The presence of SA in the leaves was confirmed by multi‐stage tandem mass spectrometry (MSn) of the [M+H]+ ion using a linear ion trap mass spectrometer. Direct analysis of the leaves revealed several species of salvinorin in addition to SA as confirmed by MSn, including salvinorin B, C, D/E, and divinatorin B. Further, the results from DESI imaging of a TLC separation of a commercial leaf extract and an acetone extract of S. divinorum leaves were in concordance with the TLC/DESI‐MS results of an authentic salvinorin A standard. The present study provides an example of both the direct analysis of intact plant materials for screening illicit substances and the coupling of TLC and DESI‐MS as a simple method for the examination of natural products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Opioids are well known for their potent analgesic efficacy and severe side effects. Studies have shown that analgesic effects are mediated by the downstream G-protein-dependent pathway of the μ-opioid receptor (MOR), and another β-arrestin-dependent pathway mediates side effects such as respiratory depression, constipation and tolerance etc. TRV130 is a biased ligand for G-protein-dependent pathway, which has high analgesia and has fewer side effects than morphine. In this study, the structure similarity search was performed on the IBSSC database using Oliceridine (TRV130) and PZM21 as templates. The 3D structure-based pharmacophore model was built and combined molecular docking prediction mode was selected to filter out small molecules, Finally, based on affinity prediction, four candidate molecules were obtained. Molecular dynamics simulations explored the detailed interaction mechanism of proteins with small molecules under dynamics. These results suggest that these candidate molecules are potential MOR agonists.  相似文献   

17.
18.
The concept of sulfoxide-covalent catalysis has been established in the context of a versatile hemiacetal hydroxyl activation/substitution reaction for the formation of anomeric linkages. Mechanistic studies focused on the hemiacetal activation process show that this transformation proceeds in the presence of a sulfonic anhydride and an acid scavenger through the intermediacy of a glycosyl sulfonate species (10), which serves as a resting state prior to the addition of an external nucleophile and subsequent glycosidic bond formation. Successful determination of the proportion of (18)O incorporation in 10 as a function of its formation, via the technique of dynamic monitoring of (13)C-(16/18)O isotopic chemical shift perturbations, provides strong evidence that hemiacetal activation proceeds through initial nucleophilic addition of the hemiacetal hydroxyl to the S(IV)-center of putative sulfonium sulfonate 6. Further confirmation was obtained through the independent synthesis, structure verification, and (1)H NMR detection of glycosyl oxosulfonium 11 during the sulfoxide-catalyzed conversion of hemiacetal 3 to glycosyl sulfonate 10.  相似文献   

19.
A crude hydrate 6 and a crystalline hemiacetal 7 of glyoxylamide 4 were prepared from crotonamide 5 (Scheme 2). Particularly hemiacetal 7 , but also 6 and the ‘dimer’ 8 (obtained from 7 ) may serve as homochiral auxiliaries. The structure of 8 was determined by X-ray analysis. By arenesulfonyl halides, tryptimines 12–14 of 4 were diastereoselectively transformed into spirotricycles 15–17 and 19 .  相似文献   

20.
A salt-induced physical gelation was found for the aqueous solution of poly(carboxylate)s having three kinds of hydroxyl groups, i.e., primary, tertiary and one on a hemiacetal ring. The gelation point (critical salt concentration) was positively correlated with the content of the hemiacetal component, while the previously confirmed hydrogen bond between the hemiacetal OH and –COO group does not seem to essentially contribute to the physical gelation. Above a critical polymer concentration, the solution viscosity was first decreased and then increased with increasing NaCl concentration, leading to gelation. However, below the critical polymer concentration, the viscosity decreased. These different behaviors of the solution viscosity depending on the polymer concentration were ascribed to a preferential promotion of intermolecular or intramolecular hydrogen bonds among the hemiacetal OH groups above and below the critical polymer concentration, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号