首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

2.
Cu(I)-catalyzed 1,3-dipolar cycloaddition (click reaction) of 1 mol equiv of N,N′-di-prop-2-ynyl-phthalamide (1a), N,N′-di-prop-2-ynyl-isophthalamide (1b), and pyridine-2,6-dicarboxylic acid bis-prop-2-ynylamide (1c), respectively with 2 mol equiv of 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide (2a), 2-azidoethyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (2b), and 2-azidoethyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranoside (2c), respectively, afforded the corresponding bis-cycloadducts 3-5, containing two 1,2,3-triazole moieties each, in 38-76% yield. Reaction of 1 mol equiv of 2c with 1 mol equiv of 1c under otherwise identical conditions gave the mono-cycloadduct 6, containing one 1,2,3-triazole and one 2-propynylamide moiety, in 77% yield. Reaction of 6 with 2a afforded 7, containing two different sugar moieties, in 67% yield.  相似文献   

3.
The PtCl2-catalyzed cyclization reaction of ortho-alkynylphenyl acetals 1 in the presence of COD (1,5-cyclooctadiene) produces 3-(α-alkoxyalkyl)benzofurans 2 in good to high yields. For example, the reaction of acetaldehyde ethyl 2-(1-octynyl)phenyl acetal (1a), acetaldehyde ethyl 2-(cyclohexylethynyl)phenyl acetal (1c), and acetaldehyde ethyl 2-(phenylethynyl)phenyl acetal (1f) in the presence of 2 mol % of platinum(II) chloride and 8 mol % of 1,5-cycloocatadiene in toluene at 30 °C gave the corresponding 2,3-disubstituted benzofurans 2a, 2c, and 2f in 91, 94, and 88% yields, respectively. Moreover, the reaction of N-methoxymethyl-2-alkynylanilines 3 was catalyzed by PdBr2, affording the corresponding 2,3-disubstituted indoles 4 in moderate yields. For example, the reaction of N-methoxymethyl-2-(1-pentynyl)-N-tosylaniline (3a) and N-methoxymethyl-2-(phenylethynyl)-N-tosylaniline (3b) in the presence of 10 mol % of PdBr2 in toluene at 80 °C gave 3-methoxymethyl-2-propyl-1-tosylindole (4a) and 3-methoxymethyl-2-phenyl-1-tosylindole (4b) in 33 and 33% yields, respectively.  相似文献   

4.
Reaction of 2 with bis(tributyltin) in the presence of 3 mol % Pd2(dba)3, 6 mol % XPhos, and 30 equiv of LiBr in wet and air bubbled THF at reflux for 8 h afforded the desired products 3 in 73–74% yields. The cross-coupling reaction of 3a with aryl iodides in the presence of 10 mol % Pd(PPh3)4 and 10 mol % CuI afforded the coupled products 4ap in 47–90% yields. The coupling reaction of 3b with various alkynyl bromides having aryl-, alkyl, or trialkylsilyl group also afforded the corresponding 1,3-enynes 5ag in 61–77% yields.  相似文献   

5.
The palladium-catalyzed cyclization–allylation reaction of ortho-azido propynylbenzenes 1 and allyl methyl carbonate 2d gives the corresponding allylated quinolines in moderate to good yields. The reaction of 1-azido-2-(2-propynyl)benzene 1a proceeds smoothly with 10 mol % Pd(PPh3)4 and 5 equiv K3PO4 or NaOAc in DMF at 100 °C to afford 3,4-diallylquinoline 3a in 69% yield in the case of R2 = H and 3-allylquinoline 4 in 67% yield in the case of R2 ≠ H.  相似文献   

6.
Ytterbium-catalyzed tandem carboalkoxylation/Friedel-Crafts reaction of arylidenecyclopropanes 1 with acetals 2 afforded the corresponding indene derivatives 3 in good to high yields. For example, in the presence of 10 mol % of Yb(OTf)3 the reaction of 1-phenylbenzylidenecyclopropane 1a with the dimethyl acetals of benzaldehyde 2a, p-tolualdehyde 2b, and p-anisaldehyde 2c gave 1,3-diphenyl-2-(2-methoxyethyl)indene 3a, 2-(2-methoxyethyl)-3-phenyl-1-(p-tolyl)indene 3b, and 1-(p-anisyl)-2-(2-methoxyethyl)-3-phenylindene 3c in 82%, 80%, and 80% yields, respectively.  相似文献   

7.
The characterization and properties of trans-(X)-[RuX2(CO)2(α/β-NaiPy)] (1, 2) (α-NaiPy (a), β-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-[RuX2(CO)(MeCN)(α/β-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (? = 0.02-0.08) are higher than 3 and 4 (? = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two π-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).  相似文献   

8.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

9.
The reactivity of the dimeric cyclopalladated compounds derived from biphenyl-2-ylamine (μ-X)22-N2′,C1-1-Pd-2-{(2′-NH2C6H4)C6H4}]2 [X = OAc (1), X = Cl (2)] towards unsaturated organic molecules is reported. Compound 1 reacted with carbon monoxide and tbutyl isocyanide producing phenanthridin-6(5H)-one and N-tert-butylphenanthridin-6-amine in 63% and 88% yield, respectively. Compound 2 reacted separately with diphenylacetylene and 3-hexyne, affording the mononuclear organopalladium compounds [κ2-N2″,C12-C2,C3- 1-Pd{(R-CC-R)2-2′-(2″-NH2C6H4)C6H4}Cl] [R = Ph (5), R = Et (6)] in 50-60% yield, which derived from the insertion of two alkyne molecules into the C-Pd σ bonds of 2. The crystal structure of compounds 5 and 6 has been determined. Compound 5 crystallized in the monoclinic space group P21/n with a = 13.3290(10) Å, b = 10.6610(10) Å and c = 22.3930(10) Å and β = 100.2690(10)°. Compound 6 crystallized in the triclinic space group with a = 7.271(7) Å, b = 10.038(3) Å and c = 16.012(5) Å, and α = 106.79(3)°, β = 96.25(4)° and γ = 99.62(4)°. The crystal structures of 5 and 6 have short intermolecular Pd-Cl?H-N-Pd non-conventional hydrogen bonds, which associated the molecules in chains in the first case and in dimers in the second.  相似文献   

10.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

11.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

12.
The reaction of trichlorosilane (1a) at 250 °C with cycloalkenes, such as cyclopentene (2a), cyclohexene (2b), cycloheptene (2c), and cyclooctene (2d), gave cycloalkyltrichlorosilanes [CnH2n−1SiCl3: n = 5 (3a), 6 (3b), 7 (3c), 8 (3d)] within 6 h in excellent yields (97-98%), but the similar reactions using methyldichlorosilane (1b) instead of 1a required a longer reaction time of 40 h and afforded cycloalkyl(methyl)dichlorosilanes [CnH2n−1SiMeCl2: n = 5 (3e), 6 (3f), 7 (3g), 8 (3h)] in 88-92% yields with 4-8% recovery of reactant 2. In large (2, 0.29 mol)-scale preparations, the reactions of 2a and 2b with 1a (0.58 mol) under the same condition gave 3a and 3b in 95% and 94% isolated yields, respectively. The relative reactivity of four hydrosilanes [HSiCl3−mMem: m = 0-3] in the reaction with 2a indicates that as the number of chlorine-substituent(s) on the silicon increases the rate of the reaction decreases in the following order: n = 3 > 2 > 1 ? 0. In the reaction with 1a, the relative reactivity of four cycloalkenes (ring size = 5-8) decreases in the following order: 2d > 2a > 2c > 2b. Meanwhile linear alkenes like 1-hexene undergo two reactions of self-isomerization and hydrosilylation with hydrosilane to give a mixture of the three isomers (1-, 2-, and 3-silylated hexanes). In this reaction, the reactivity of the terminal 1-hexene is higher than the internal 2- and 3-hexene. The redistribution of hydrosilane 1 and the polymerization of olefin 2 occurred rarely under the thermal reaction condition.  相似文献   

13.
Wittig reaction of 3-[4-(dimethylamino)phenyl]propanal (5) with (3-guaiazulenylmethyl)triphenylphosphonium bromide (4) in ethanol containing NaOEt at 25 °C for 24 h under argon gives the title (2E,4E)-1,3-butadiene derivative 6E in 19% isolated yield. Spectroscopic properties, crystal structure, and electrochemical behavior of the obtained new extended π-electron system 6E, compared with those of the previously reported (E)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)ethylene (12), are documented. Furthermore, reaction of 6E with 1,1,2,2-tetracyanoethylene (TCNE) in benzene at 25 °C for 24 h under argon affords a new Diels-Alder adduct 8 in 59% isolated yield. Along with spectroscopic properties of the [π4+π2] cycloaddition product 8, the crystal structure, possessing a cis-3,6-substituted 1,1,2,2-tetracyano-4-cyclohexene unit, is shown. Moreover, reaction of 6E with (E)-1,2-dicyanoethylene (DCNE) under the same reaction conditions as the above gives no product; however, this reaction in p-xylene at reflux temperature (138 °C) for four days under argon affords a new Diels-Alder adduct 9 in 54% isolated yield. Although reaction of 6E with DCNE in toluene at reflux temperature (110 °C) for four days under argon provides 9 very slightly, reaction of 6E with dimethyl acetylenedicarboxylate (DMAD) in toluene at reflux temperature for two days under argon yields a new Diels-Alder adduct 10, in 58% isolated yield, which upon oxidation with MnO2 in CH2Cl2 at 25 °C for 1 h gives 11, converting a (CH3)2N-4″ into CH3NH-4″ group, in 37% isolated yield. The crystal structure of 11 supports the molecular structure 10 possessing a partial structure cis-3,6-substituted 1,2-dimethoxycarbonyl-1,4-cyclohexadiene. The title basic studies on the above are reported in detail.  相似文献   

14.
The enantioselective addition of allylstannanes and allylsilanes to alkyl glyoxylates of type 1, catalyzed by chiral (salen)Cr(III) complexes 3, has been studied. We have found that the reaction proceeded smoothly for low loading (1-2 mol %) of (1R,2R)-(salen)Cr(III)BF43a or (1R,2R)-(salen)Cr(III)ClO43c, and allyltributyltin under simple, undemanding conditions, affording (R)-2-hydroxypent-4-enoic acid esters 2 in good yield (61-90%) and enantioselectivity (58-76% ee).  相似文献   

15.
Keun Sam Jang 《Tetrahedron》2008,64(24):5666-5671
After finding in a previous study that naphthalene and quinoline can react via electrophilic aromatic addition reaction (AdEAr), we applied this to anthracene. When anthracene was reacted with bromine in methanol in the presence of NaHCO3 and pyridine, 9,10-dihydro-9,10-dimethoxyanthracene (2) was obtained in 82% yield in the absence of substitution products or oxidative demethylation products like anthraquinone. The same reaction in ethanol produced 9,10-diethoxy-9,10-dihydroanthracene (9) in much lower yield (45%). In addition, we investigated the reactivity of addition product 2. Treatment of 2 with DDQ in benzene at 65 °C for 12 h produced 9,10-dimethoxyanthracene (3) in 62% yield, and 2 was rapidly transformed to 9-methoxyanthracene (4) in methanolic NaOH in 10 min. Moreover, the acid-catalyzed aromatization of 2 in 1-propanol at 75 °C for 10 min gave 9-n-propoxyanthracene (8) in 65% yield.  相似文献   

16.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

17.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

18.
The reaction of C,O,O-tris(trimethylsilyl)ketene acetal 1 with saturated, cyclic and aromatic ketones 2 proceeds smoothly in the presence of titanium chloride to give (E)-α,β-unsaturated carboxylic acids 3 with fairly good stereoselectivity. With α,β-unsaturated ketones 4, α-trimethylsilyl δ-ketoacids 5 (syn + anti) are obtained according to Michael-type 1,4 addition. These diastereoisomers are separated and the configurations of 5a are achieved by X-ray molecular analysis.  相似文献   

19.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

20.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号