首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Dielectric measurements were carried out for the suspensions of chitosan gel beads (CGB) crosslinked with glutaraldehyde (GA), ranging in crosslinking time from 1 to 180 min at six fixed low GA concentrations over a frequency range from 40 to 110 MHz. The distinct dielectric relaxations observed in the frequency range of 10(4)-10(5) Hz were explained by the effects of the interfacial polarization. By fitting the experimental data with Cole-Cole equation the dielectric parameters of the suspensions were obtained, and the phase parameters were calculated using Hanai's method. The influence of crosslinking on the dielectric spectra of CGB was investigated by viewing the crosslinking time dependencies of conductivity increment (Deltakappa), relaxation frequency (f(0)), permittivity of CGB (epsilon(i)), conductivity of CGB (kappa(i)) and conductivity of continuous media (kappa(a)) at six fixed GA concentrations. Some information were gained, such as, thinner electric double layer, particle with rougher surface and more compact gel backbone with increasing crosslinking time. The basic information obtained can provide valuable references for the preparation of CGB and the application to more extensive fields such as controlled-release technology of medicament.  相似文献   

2.
We determined water content and water distribution by fitting dielectric spectra of ischemic canine hearts between 5 MHz and 3 GHz with a newly developed model which describes heart cells and subcellular organelles as rotational ellipsoids filled with electrolyte enclosed by an isolating membrane. The fraction of dry material is modelled by spherical particles with a small dielectric permittivity. Free model parameters were water content, cell volume fraction, and the conductivity of the electrolytes. Resulting model parameters were compared to data from tissue desiccation and to conductivity changes produced by protons and lactate ions. We investigated hearts in two states: during ischemia after interruption of blood flow (pure ischemia, PI, n=5) and during ischemia after resuscitation with Tyrode's solution (IAR, n=14).The difference between water content determined by tissue desiccation and by dielectric spectroscopy was less than 0.5%. During 360 min of ischemia, water content in IAR decreased from 85+/-1.6% to 83+/-2.2% and in PI from 80+/-0.8% to 78+/-1.5%. Cellular volume fraction in IAR increased from 0.47+/-0.045 to 0.63+/-0.031 and in PI from 0.62+/-0.014 to 0.73+/-0.013, which is consistent with published morphometric data. After 180 min of ischemia, the increase of the cytosolic conductivity was 0.14+/-0.02 S/m as calculated from the dielectric spectrum and was similar to the conductivity increase which was roughly estimated on the basis of tissue lactate concentration.In conclusion, dielectric spectroscopy combined with our model analysis facilitates the monitoring of water content and distribution by means of nondestructive surface probes.  相似文献   

3.
The purpose of this study is to confirm the applicability of dielectric mixture equations in dielectric analysis of biological cell suspensions. Two dielectric mixture equations, the Pauly-Schwan (P-S) equation and the Hanai-Asami-Koizumi (H-A-K) equation were tested using sheep erythrocyte ghosts whose internal solution is identical with the external solution. Dielectric measurements were carried out for the ghost suspensions over a frequency range 10 kHz to 100 MHz; a single dielectric relaxation was found between 100 kHz and 10 MHz. From the dielectric relaxation, the conductivity and permittivity of the ghost interior and the capacitance of the cell membrane were calculated following the P-S and H-A-K equations. When the H-A-K equation was employed (and as expected from the property of the ghosts), the estimated internal conductivity was in good agreement with the external conductivity at volume fractions up to about 0.7. With the P-S equation, on the other hand, the same results as above were obtained but only at low volume fractions below about 0.3. In addition, the H-A-K equation provided a better simulation for the observed relaxation curves than did the P-S equation, especially at high volume fractions. It is, therefore, concluded that the H-A-K equation is applicable to a wider range of volume fraction than is the P-S equation.  相似文献   

4.
A numerical method using the boundary element method was developed to calculate the complex permittivity of suspensions of particles in the shape of Dinfinityh symmetry covered with a shell phase. It was an extension of the analytical methods based on Maxwell-Wagner-Sillars' effects in suspensions of shelled ellipsoids. This method was applied to particles, which were relevant to budding yeast cells and erythrocytes, to examine the effects of the shape on frequency-dependence of the permittivity and conductivity of their suspensions. Results of the calculations showed that the permittivity and conductivity at high frequencies were insensitive to the change in the shape. The change in shape affected the permittivity and conductivity at low frequencies and their frequency-dependence in the intermediate frequency region. This behavior could not be imitated by the calculation using analytical methods with shelled spheroid models.  相似文献   

5.
Most of biological cells have microvilli on their surfaces, which significantly influence their dielectric properties. The complex permittivity of a cubical system containing a spherical cell model with cylindrical projections was calculated over a frequency range of 10 kHz to 100 MHz using the three-dimensional finite-element method. The spectra of the complex permittivity consisted of low- and high-frequency relaxation processes which were respectively attributed to the polarization of the membranes covering the projections and the spherical body. Conventional analysis based on the spherical shell model was applied to the simulated spectra to discuss the effects of cell surface morphology on the electric parameters estimated for the plasma membrane and the cytoplasm.  相似文献   

6.
The results presented give the evidence for the quasicritical, pretransitional behavior of dielectric properties in the isotropic phase of a rodlike nematic liquid crystal with the transverse permanent dipole moment. Studies were conducted in 2-cyano-4-pentylbiphenyl 4-(trans-4-pentylcyclohexyl) benzoate, focusing on the static-and ionic-dominated low-frequency (LF) regions. For the static dielectric permittivity [epsilon(')(T)] the application of the derivative analysis revealed the pretransitional anomaly associated with the specific heat exponent alpha approximately 0.5. For the LF domain the contribution to epsilon(')(T) from residual ionic impurities follows a linear temperature dependence on approaching the isotropic-nematic (I-N) transition. This dependence and pretransitional anomalies of electric conductivity and dielectric modulus can be associated with the influence of prenematic fluctuations. "Linear" dielectric studies were supported by the static nonlinear dielectric effect measurements, which delivered reliable estimations of the temperature of the hypothetical continuous phase transition T(*) and the discontinuity of the I-N transition DeltaT approximately 1.7 K.  相似文献   

7.
This work describes the preparation and stability evaluation of suspensions consisting of hydrophobic magnetite nanoparticles dispersed in different organic solvents. The ferrite particles are covered by a shell of chemisorbed oleate ions following a procedure that is described in detail. The oleate-covered particles were dispersed in different organic solvents with dielectric constants, epsilon(r), ranging between 1.8 and 9, and the centrifugal field strength needed to remove particle aggregates formed during the synthesis was determined for the different liquid carriers used. A thermodynamic analysis demonstrated that the observed stability of the suspensions in liquids with epsilon(r) < 5 is well correlated with the very low lyophobic attraction between the particles. This can easily be surmounted by thermal agitation, since the van der Waals attraction is negligible. In contrast, for liquids with epsilon(r) > 9, the suspensions become unstable because of the combined action of the van der Waals and lyophobic attractions, the latter being dominant for very polar solvents. Finally, a complete magnetic characterization of the oleate-magnetite powder, as well as of several stable ferrofluids prepared with it, was carried out. From this characterization, the magnetic diameters and magnetic moments of the particles immersed in the different liquid carriers were estimated and compared to those corresponding to the dry magnetic particles. This made it possible to estimate the thickness of the nonmagnetic layer on the particles.  相似文献   

8.
During the tip approach to hydrophobic surfaces like the water/air interface, the measured interaction force reveals a strong attraction with a range of approximately 250 nm at some points along the interface. The range of this force is approximately 100 times larger than the measured for gold (approximately 3 nm) and 10 times larger than the one for hydrophobic silicon surfaces (approximately 25 nm). At other points the interface exerts a medium range repulsive force growing stepwise as the tip approaches the interface plane, consequently the hydrophobic force is a strong function of position. To explain these results we propose a model where the force on the tip is associated with the exchange of a small volume of the interface with a dielectric permittivity epsilon(int) by the tip with a dielectric permittivity epsilon(tip). By assuming a oscillatory spatial dependence for the dielectric permittivity it is possible to fit the measured force profiles. This dielectric spatial variation was associated with the orientation of the water molecules arrangement in the interfacial region. Small nanosized hydrogen-bond connected cages of water molecules present in bulk water at the interface are oriented by the interfacial electric field generated by the water molecules broken bonds, one broken hydrogen bond out of every four. This interfacial field orients small clusters formed by approximately 100 water molecules into larger clusters (approximately 100 nm). In the limit of small (less than 5 nm thick) water molecule cages we have modeled the static dielectric permittivity (epsilon) as the average response of those cages. In these regions the dielectric permittivity for water/air interfaces decreases monotonically from the bulk value epsilon approximately 80 to approximately 2 at the interface. For regions filled with medium size cages, the tip senses the structure of each cage and the static dielectric permittivity is matched to the geometrical features of these cages sized approximately 25 to 40 nm. Interfacial electric energy density values were calculated using the electric field intensity and the dielectric permittivity obtained by the fitting of the experimental points. The integration of the electric energy density along the interfacial region gives a value of 0.072 J m(-2) for interfacial energy density for points where the hydrophobic force has a range of approximately 250 nm. Regions formed by various clusters result in lower values of the interfacial energy density.  相似文献   

9.
We describe the direct electro-chemical reduction of graphene oxide to graphene from aqueous suspension by applying reduction voltages exceeding -1.0 to -1.2 V. The conductivity of the deposition medium is of crucial importance and only values between 4-25 mS cm(-1) result in deposition. Above 25 mS cm(-1) the suspension de-stabilises while conductivities below 4 mS cm(-1) do not show a measurable deposition rate. Furthermore, we show that deposition can be carried out over a wide pH region ranging from 1.5 to 12.5. The electro-deposition process is characterised in terms of electro-chemical methods including cyclic voltammetry, quartz crystal microbalance, impedance spectroscopy, constant amperometry and potentiometric titrations, while the deposits are analysed via Raman spectroscopy, infra-red spectroscopy, X-ray photoelectron spectroscopy and X-ray diffractometry. The determined oxygen contents are similar to those of chemically reduced graphene oxide, and the conductivity of the deposits was found to be ~20 S cm(-1).  相似文献   

10.
11.
A relation has been found to exist between the limiting equivalent electrical conductivity of inorganic salt solutions, viscosity, temperature, and dielectric properties of the solvent. As temperature rises, the limiting equivalent electrical conductivity of aqueous solution of an inorganic salt has been shown to increase in direct proportion to the ratio of the dielectric permittivity to the dipole dielectric relaxation time, i.e., the limiting high-frequency electrical conductivity of the polar solvent. Expressions have been derived to be used in ascertaining the limiting equivalent electrical conductivities of inorganic salt solutions proceeding from the dielectric properties of the solvent.  相似文献   

12.
The molar absorption coefficient of ricin in phosphate-buffered saline (PBS) at 279 nm was measured as (93,900+/-3300) L mol(-1) cm(-1). The concentration of ricin was determined using amino acid analysis. The absorption spectrum of ricin was interpreted in terms of 69% contribution from absorption by tryptophan residues and 31% contribution from absorption by tyrosine residues. The total dipole strength of the ricin band at 280 nm was determined to be (147+/-8) D2 and was consistent with the combined dipole strengths of 10 tryptophan ([11.7+/-1.0] D2) and 23 tyrosine ([1.4+/-0.2] D2) residues. The structure of ricin was used to determine the coupling of the tryptophan residues in ricin. The maximum interaction energy was found to be 424 cm(-1)/epsilon while the average interaction between any two pairs of tryptophan residues was approximately 18 cm(-1)/epsilon. In this study, epsilon is the dielectric constant inside the protein. The fluorescence from ricin, excited at 280 nm, was dominated by fluorescence from tryptophan residues suggesting the presence of energy transfer from tyrosine to tryptophan residues. The absorbance and fluorescence of ricin increased slightly when ricin was denatured in a high concentration of guanidine. Irreversible thermal unfolding of ricin occurred between 65 degrees C and 70 degrees C. (D=3.3364*10(-30) Cm, not SI unit, convenient unit for the magnitude of the electric dipole moment of molecules.).  相似文献   

13.
The complex dielectric permittivity in the frequency range 7.5–25.0 GHz and the low-frequency specific conductivity of aqueous solutions of diallylammonium salts (diallylammonium and diallylmethylammonium trifluoroacetates and diallyldimethylammonium chloride) were measured at 293–308 K over a wide concentration range. On the basis of the results, the parameters of dielectric relaxation were calculated. The number of water molecules in the solvation shell of the salts was estimated. The concentration behavior of the initial rate of radical polymerization of diallylammonium salts and the rate constant of bimolecular chain termination was correlated with the specific features of the structure of aqueous monomer solutions. The role of “free” water in the initial salt solutions was revealed, a species whose presence in the system determines the character of concentration behavior of the rate constants for the elementary steps of polymerization, such as propagation, chain transfer to the monomer, and bimolecular chain termination.  相似文献   

14.
The dynamic mobility spectra of suspensions of semiconducting tin(IV) oxide particles doped with antimony have been measured with the technique of electroacoustics. The magnitude of the complex mobility decreases essentially monotonically with increasing frequency, just as for a nonconducting (dielectric) particle under the same conditions. Unlike the case for a dielectric particle, however, the magnitudes at low frequency increase with increasing conductivity. The phase angle behavior is also different from that of a normal dielectric particle. The change in the phase angle behavior is most obvious at low suspension conductivity and high frequency where the phase angles showed a much smaller phase lag than at high conductivities. Reasonable agreement was found between the experimental mobility and the theoretical dynamic mobility spectra obtained with O'Brien's theory for the enhanced permittivity of semiconductors. Copyright 2001 Academic Press.  相似文献   

15.
We investigate the interactions of polarizable solutes in water as a function of the solute permittivity. A generic and computationally efficient simulation methodology for the investigation of systems involving dielectric discontinuities is introduced. We report results for interactions between two polarizable cylindrical solutes of nanometer dimensions, which demonstrate that the interactions between the solutes strongly depend on the solute permittivity epsilon. For low permittivity, epsilon approximately 1-2, the interactions are dominated by surface tension forces whose origin lies in the formation of a vapor cavity between the two hydrophobic solutes. This effect leads to a drying transition, where the intersolute force changes discontinuously at a specific solute-solute separation. We find that a moderate permittivity, epsilon approximately 20, enhances the solvation of the polarizable objects inhibiting this drying transition. In the limit of moderately high permittivity, the interactions are dominated by solvation forces. These forces are much larger than those calculated using macroscopic models of dielectrics, which consider water as a continuum dielectric medium. Our results emphasize the importance of including the solvent explicitly to investigate dielectric discontinuities and interactions between polarizable media in water.  相似文献   

16.
We present extensive molecular dynamics simulation results for the structure and the static and dynamical responses of a droplet of 1000 soft spheres carrying extended dipoles and confined to spherical cavities of radii R=2.5, 3, and 4 nm embedded in a dielectric continuum of permittivity epsilon(')>or=1. The polarization of the external medium by the charge distribution inside the cavity is accounted for by appropriate image charges. We focus on the influence of the external permittivity epsilon(') on the static and dynamic properties of the confined fluid. The density profile and local orientational order parameter of the dipoles turn out to be remarkably insensitive to epsilon('). Permittivity profiles epsilon(r) inside the spherical cavity are calculated from a generalized Kirkwood formula. These profiles oscillate in phase with the density profiles and go to a "bulk" value epsilon(b) away from the confining surface; epsilon(b) is only weakly dependent on epsilon('), except for epsilon(')=1 (vacuum), and is strongly reduced compared to the permittivity of a uniform (bulk) fluid under comparable thermodynamic conditions. The dynamic relaxation of the total dipole moment of the sample is found to be strongly dependent on epsilon(') and to exhibit oscillatory behavior when epsilon(')=1; the relaxation is an order of magnitude faster than in the bulk. The complex frequency-dependent permittivity epsilon(omega) is sensitive to epsilon(') at low frequencies, and the zero-frequency limit epsilon(omega=0) is systematically lower than the bulk value epsilon(b) of the static permittivity.  相似文献   

17.
Surface-conductive particles consisting of a poly(methyl methacrylate) (PMMA) core and a polyaniline (PA)-coated shell were synthesized and adopted as suspended particles for electrorheological (ER) fluids. The PA-PMMA composite particles synthesized were monodisperse and spherical in shape. The PA-PMMA suspensions in silicone oil showed typical ER characteristics under an applied electric field. The PA-PMMA composite particles possess a higher dielectric constant and conductivity than the pure PA particle, within an acceptable conductivity range for ER fluids, but the PA-based ER fluid showed larger shear-stress enhancement than the PA-PMMA-based systems. This phenomena can be explained by the interfacial polarizability of PA-based ER fluids, which is the difference between the ER fluid's dielectric constant and loss factor - this polarizability was higher than that of PA-PMMA-based ER fluids, as shown by the dielectric spectrum of each fluid. The insulating PMMA core suppressed the interfacial polarization in ER fluids, resulting in reduced interaction among particles under an imposed electric field.  相似文献   

18.
The complex dielectric spectrum of heart tissue during ischemia   总被引:8,自引:0,他引:8  
INTRODUCTION: Because of the variety of tissue structures, the interpretation of the passive complex dielectric permittivity spectrum epsilon (omega) of the heart is still a problem. The aim of this work was to correlate epsilon (omega) of heart tissue with physical processes on cellular level. METHODS: epsilon (omega) of canine hearts was continuously measured in the range from 10 Hz to 400 MHz during cardioplegic perfusion and during following ischemia. Cardioplegic perfusion was performed with HTK (Custodiol) without or with heptanol, in order to produce electrical cell uncoupling via the closure of gap junctions. To analyse epsilon (omega), we present two heart models which consider cell shape, electrical cell coupling, and dielectric polarisation of cell membranes and membranes of intracellular structures. RESULTS: epsilon (omega) of heart tissue shows an alpha-, beta-, and gamma-dispersion. epsilon (omega) remains unchanged during cardioplegic perfusion with HTK, but if heptanol is added, there is an immediate decrease in the region of alpha-dispersion and an increase in the low frequency part of beta-dispersion. Similar changes are observed during ischemia following HTK perfusion without heptanol; additionally, the beta-dispersion shifts to higher frequencies. Using our models, we obtain analogue changes of epsilon (omega) by fitting model parameters which describe water content, water distribution, extra- and intracellular conductivity, and gap junction resistance. DISCUSSION: Changes of these tissue properties as calculated by our models based on the measurement of epsilon (omega) are consistent with intraischemic changes of heart tissue known from immunohistochemical, biochemical, and histological investigations. The next step will be to use our models for the prognosis of irreversible tissue damage.  相似文献   

19.
Electrical cell uncoupling via gap junction closure is assumed to cause characteristic changes of the passive dielectric spectrum of ischemic heart tissue. In order to find an independent evidence for this assumption, we analysed heart tissue during ischemia, measured the open state of gap junctions by means of dye transfer and correlated this parameter with the time course of the dielectric permittivity. The hearts were pre-ischemically arrested by perfusion with Ringer solution containing 20 mmol/L of potassium (group KCL, n=10). This solution was also used with the addition of two gap junction blockers, either 3 mmol/L heptanol (group HEP, n=4) or 20 micromol/L palmitoleic acid (group PA, n=7). During subsequent ischemia at 21.0+/-0.5 degrees C, we monitored the passive dielectric permittivity spectrum and the spread of dye. After a sigmoidal increase the dielectric permittivity reached an upper plateau at 61+/-22 min of ischemia in KCL, at 45+/-7 min in PA, and already during perfusion at 2+/-1 min in group HEP. At the beginning of ischemia, dye migrated to neighbouring cells in groups KCL and PA but not in HEP. In KCL and PA, the intercellular diffusion of dye stopped after 64+/-26 and 40+/-11 min of ischemia, respectively. Our results suggest that the sigmoidal increase in dielectric permittivity and the reduction of dye diffusion depend on a common mechanism, namely gap junction closure.  相似文献   

20.
In this paper, dielectric measurements were carried out on concentrated suspensions of D354 ion-exchange resin (IER) beads dispersed in electrolyte solutions. The distinct high-frequency dielectric behavior occurring in the megahertz frequency range was interpreted based on the understanding of the interparticle interaction and the properties of the constitute phases. The results indicated that the dominant parameter of continuous phase influencing HFDD is the solution concentration after full Donnan equilibrium, while the dominant parameter of dispersed phase influencing HFDD is the fixed charge density. In addition, properties of the dispersed IER beads including electric conductivity and permittivity were obtained in terms of the Hanai’s method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号