首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-phase samples of tungsten bronzes M x WO3 (M = K+, Rb+, Cs+) are prepared by solid-state synthesis. The reversibility of the M0.33WO3/M+-solid electrolyte interface is studied subject to the alkali metal nature and humidity over a wide temperature interval. The exchange current density at 24°C and 58%-relative humidity is 3.6 × 10?4 A/cm2 for the Rb0.33WO3/Rb+-solid electrolyte interface; 2.2 × 10?4 A/cm2 for the Cs0.33WO3/Cs+-solid electrolyte interface; and 1.3 × 10?4 A/cm2 for the K0.33WO3/K+-solid electrolyte interface. A correlation between the reversibility of the bronze|solid electrolyte interface, which is characterized by the exchange current density, and the rate of potential equilibration in sensor systems, where the bronze is a reference electrode, is revealed. Ionic component of the conductivity of the synthesized tungsten oxide bronzes is measured at a background of the predominant electronic conductivity. The ionic conductivity is three orders of magnitude lower than the electronic conductivity; it decreases in the series Rb0.33WO3 > Cs0.33WO3 > K0.33WO3, amounting to 2.3 × 10?2, 2.1 × 10?3, and 2 × 10?4 S cm?1, respectively. The working capacity of the M0.3WO3 bronzes as reference electrodes in sensor systems for carbon dioxide detection is evaluated. The plots of the cell potential vs. the CO2 concentration in the electrochemical cells are linear, their slopes (59 ± 1 mV/decade) are characteristic for one-electron process. The fastest response to changes in the CO2 concentration was obtained with the sensor system that used Rb0.33WO3 as reference electrode.  相似文献   

2.
The N-acetyl-4-aminophenoxyl radical, a supposed intermediate of the enzymatic oxidation of acetaminophen in living organisms, was prepared and studied by means of nanosecond laser flash photolysis. A number of important spectral-kinetic parameters of this species were determined, namely, the absorption coefficient at 440 nm ((4.2±0.2)×103 l mol?1cm?1), the quantum yield of acetaminophen photoionization at 266 nm (φ= 0.03), and the rate constants for recombination (2k= (2.4±0.3))×109 l mol?1s?1) and the reaction with the superoxide radical (k= (9±2))×109 l mol?1s?1).  相似文献   

3.
The methane combustion inhibitor CCl4 exerts no effect on the first ignition limit of hydrogen; therefore, the role of hydrogen atoms in hydrocarbon oxidation consists at least of participating in longer reaction chains than are observed in hydrogen oxidation. The upper limits of the rate constants of the reactions of hydrogen atoms with propylene and isobutylene molecules were estimated by the self-ignition limit method to be (1.0 ± 0.3) × 10?11 exp(?1450 ± 400/T) and (0.8 ± 0.3) × 10?11 exp(?550 ± 200/T) cm3 molecule?1 s?1, respectively, in the temperature range of 840–950 K. These data are evidence that the stronger inductive effect of the two methyl groups in isobutylene lowers the energy barrier to the H + iso-C4H8 reaction. It has been demonstrated experimentally that chemiluminescence in the hydrocarbon flame front at atmospheric pressure precedes heat evolution. Throughout the pressure and temperature ranges examined (5–750 Torr, 298–950 K), the chain mechanism determines the basic laws of combustion.  相似文献   

4.
Dimethylgold(III) complexes with 8-hydroxyquinoline Me2Au(Ox) (I) and 8-mercaptoquinoline Me2Au(Tox) (II) were synthesized and studied. Complex II obtained for the first time was identified from the elemental analysis, IR, 1H NMR, and mass spectrometry data. The thermal properties of complexes I, II in condensed state were investigated by thermography. The temperature dependences of the saturated vapor pressure over crystals were measured by the Knudsen effusion method with mass spectrometric recording of the gas phase composition and the thermodynamic characteristics of the sublimation process were determined: for I, log P[Torr] = (14.6 ± 0.3) ? (6.34 ± 0.10) × 103/(T, K), Δ H subl o = 121.2 ± 1.9 kJ?1, Δ S subl o = 224.1 ± 4.6 J mol?1 K?1 (the temperature interval under study 80–115°C); for II, log P [Torr] = (13.3 ± 0.2) ? (6.30 ± 0.09) × 103/(T, K), Δ H subl o = 120.5 ± 1.7 kJmol?1, ΔS subl o = 199.3 ± 3.0 J mol?1 K?1 (86–145°C).  相似文献   

5.
The reaction between hydrogen iodide and ozone at 295 K has been investigated by the resonance fluorescence method applied to the detection of iodine atoms. A chain mechanism is suggested for this reaction. The chain initiation rate constant is k 1 = (5.45 ± 1.80) × 10?17 cm3/s, and the chain propagation rate constant is k 3 = (1.1 ± 0.4) × 10?12 cm3/s.  相似文献   

6.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

7.
The chemical diffusion coefficient of oxygen vacancies and oxygen ion conductivity in lanthanum cobaltite LaCoO3 were determined by the polarization method as functions of oxygen partial pressure \(p_{O_2 } \) (atm) and temperature T(K) over the ranges ?4 ≤ log \(p_{O_2 } \) ≤ 0 and 1173 K ≤ T ≤ 1323 K. The mobilities (cm2/(V s)) of oxygen vacancies calculated over the temperature range studied satisfy the inequalities 1.8 × 10?5\(v_{v_0 } \) ≤ 3.4 × 10?5. The transfer numbers of oxygen vacancies were calculated. These numbers change depending on oxygen partial pressure over the range 5 × 10?7t 0 ≤ 1 × 10?5. The activation energy of self-diffusion of oxygen vacancies was found to be E a= 104 ± 10 kJ/mol (1.1 ± 0.1 eV).  相似文献   

8.
An investigation is conducted on enhancing lithium-ion intercalation and conduction performance of transparent organo tantalum oxide (TaO y C z ) films, by addition of lithium via a fast co-synthesis onto 40 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates at the short exposed durations of 33–34 s, using an atmospheric pressure plasma jet (APPJ) at various mixed concentrations of tantalum ethoxide [Ta(OC2H5)5] and lithium tert-butoxide [(CH3)3COLi] precursors. Transparent organo-lithiated tantalum oxide (Li x TaO y C z ) films expose noteworthy Li+ ion intercalation and conduction performance for 200 cycles of reversible Li+ ion intercalation and deintercalation in a 1 M LiClO4-propylene carbonate electrolyte, by switching measurements with a potential sweep from ?1.25 to 1.25 V at a scan rate of 50 mV/s and a potential step at ?1.25 and 1.25 V, even after being bent 360° around a 2.5-cm diameter rod for 1000 cycles. The Li+ ionic diffusion coefficient and conductivity of 6.2?×?10?10 cm2/s and 6.0?×?10?11 S/cm for TaO y C z films are greatly progressed of up to 9.6?×?10?10 cm2/s and 7.8?×?10?9 S/cm for Li x TaO y C z films by co-synthesis with an APPJ.  相似文献   

9.
The molecular and crystal structure of single-crystalline mesitylenesulfonic acid dihydrate (1) was determined by X-ray diffraction and IR spectroscopy. According to X-ray diffraction data, water molecules in the crystal structure form H5O2 + cations stabilized by an intracationic hydrogen bond with a length of 2.45(1) Å. The formation of the asymmetric H5O2 + cation was confirmed by IR spectroscopy. The crystallographic nonequivalence of the water molecules results in a shift of the bridging proton from the midpoint of the strong hydrogen bond in the cation toward one of the water molecules. The proton conductivity of compound 1 was measured by impedance spectroscopy. Dihydrate 1 is completely dehydrated upon prolonged storage in a dry argon glove box and undergoes the transition to the dielectric state. Compound 1 is stable in the humidity range of 32–66 rel.%. The conductivity of dihydrate 1 is (2.4±0.3) · 10?5 Ohm?1 cm?1 at 298 K, E a = 0.21±0.01 eV.  相似文献   

10.
The UV absorption spectrum and kinetics of CH2I and CH2IO2 radicals have been studied in the gasphase at 295 K using a pulse radiolysis UV absorption spectroscopic technique. UV absorption spectra of CH2I and CH2IO2 radicals were quantified in the range 220–400 nm. The spectrum of CH2I has absorption maxima at 280 nm and 337.5 nm. The absorption cross-section for the CH2I radicals at 337.5 nm was (4.1 ± 0.9) × 10?18 cm2 molecule?1. The UV spectrum of CH2IO2 radicals is broad. The absorption cross-section at 370 nm was (2.1 ± 0.5) × 10?18 cm2 molecule?1. The rate constant for the self reaction of CH2I radicals, k = 4 × 10?11 cm3 molecule?1 s?1 at 1000 mbar total pressure of SF6, was derived by kinetic modelling of experimental absorbance transients. The observed self-reaction rate constant for CH2IO2 radicals was estimated also by modelling to k = 9 × 10?11 cm3 molecule?1 s?1. As part of this work a rate constant of (2.0 ± 0.3) × 10?10 cm3 molecule?1 s?1 was measured for the reaction of F atoms with CH3I. The branching ratios of this reaction for abstraction of an I atom and a H atom were determined to (64 ± 6)% and (36 ± 6)%, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A continuum-absorption spectrum between 200 and 240 nm is assigned to the acetyl radical. Kinetic measurements using molecular modulation spectroscopy show for the reaction CH3 + CO (+M) → CH3CO + M the rate constants are (1.8 ± 0.2) × 10?18 cm3 molecule?1 s?1 at 100 Torr and (6 ± 1) × 10?18 at 750 Torr. The rate constant for acetyl combination 2CH3CO → (CH3CO)2 is (3.0 ± 10) × 10?11 at 25°C.  相似文献   

12.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A copper(II) complex with salicylaldehyde N-(2-salicylideneiminoglutaryl)hydrazone (H4L) of the formula [Cu2L · 2Py]2 · 8H2O (I) was obtained and characterized by X-ray diffraction. The crystals are monoclinic, space group P21, a = 13.0663 Å, b = 16.5553 Å, c = 17.7650 Å, β = 97.9420°; Z = 4. The complex is tetranuclear with a “dimer-of-dimers” structure in which the copper cations of two binuclear subunits are linked by phenoxy bridges. The EPR spectra of solutions of complex I show a superposition of two signals of four HFS lines (g 1 = 2.111, a 1 = 56.8 × 10?4 cm?1 and g 2 = 2.183, a 2 = 71.0 × 10?4 cm?1).  相似文献   

14.
We have reported the semi conducting and photoelectrochemical properties of SrWO4 prepared by chemical route. The phase purity is confirmed by X-ray diffraction and the oxide is characterized by scanning electron microscopy, diffuse reflectance, and electrochemical impedance spectroscopy. SrWO4 crystallizes in the scheelite structure with an average crystallite size of 378 ± 6 nm. The Raman spectrum gives an intense peak at 920 cm?1 assigned to A g mode while the infrared analysis confirms the hexagonal coordination of tungsten. The UV-visible spectroscopy shows an indirect optical transition at 2.60 eV. SrWO4 exhibits n-type conduction by oxygen deficiency, confirmed by the chrono-amperometry and the intensity potential J(E) curve shows a small hysteresis. The Mott-Schottky plot gives electrons density of 5.72 × 1018 cm?3 and a flat band potential of 0.27 VSCE, indicating that the conduction band derives mainly from W6+: 6s orbital. The electrochemical impedance spectroscopy (EIS), measured in the range (1–105 Hz), shows the predominance of the bulk contribution with a dark impedance of 38 kΩ cm2. As application, the ibuprofen is degraded by electrocatalysis on SrWO4 with a conversion rate of 42%. An improvement up to 77% has been obtained by electrophotocatalysis under UV light; the conversion follows a first order kinetic with a rate constant of 2.32 × 10?4 min?1.  相似文献   

15.
Fine structure levels in an external magnetic field and angular dependences of resonance magnetic fields on the direction of an external magnetic field were calculated for two axially symmetrical quintet dinitrenes with the zero-field splitting parameters D q = 0.260 cm?1, E q = 0.000 and D q = 0.243 cm?1, E q = 0.003 cm?1. The EPR spectra of such dinitrenes contained lines of only three xy transitions (xy 1, xy 2, and xy 4), two Δm s = ±2 transition lines between the W ?2 and W 0 sublevels, and three additional lines from noncanonically oriented molecules whose magnetic axis Z made an angle of 12°–16° or 52°–54° with an external magnetic field.  相似文献   

16.
A trinuclear copper(II) complex of trimesic acid salicylidene hydrazone (H6L) having the composition [Cu3L · 4Py] · CH3OH was synthesized and characterized. By X-ray crystallography, the crystals are triclinic: a = 11.7940(4) Å, b = 13.7241(5) Å, c = 15.8993(6) Å, α = 107.4120(10)°, β = 94.2900(10)°, γ = 105.5650(10)°, space group \(P\bar 1\), Z = 2. The number of symmetrically unique reflections having I > 2σ(I) is 7636, R = 0.0465, and R w = 0.1198. The newly prepared complex contains, in its unit cell, two [Cu3L · 4Py] molecules which are linked to form a dimer on account of phenoxo bridges (the Cu-O bond length is 2.555 the Cu…Cu distance is 3.348 Separations between them are 9.414, 9.371, and 9.667 of temperature is satisfactorily fitted in terms of a triangular cluster model (?2J = 2.2 cm?1) with extra intermolecular interactions (zJ′ = 0.4 cm?1). EPR spectra of solutions at 360–380 K feature a poorly resolved HFS, whose modeling gives a satisfactory result with allowance for the interaction of unpaired electrons with three equivalent copper nuclei (g = 2.098; a Cu = 25.8 × 10?4 cm?1).  相似文献   

17.
The kinetics of 1,1-dimethylpropyl peroxy radicals recombination in polar solvents—water, methanol, and their mixtures—was studied by EPR spectroscopy in combination with the stopped-flow method, and the rate constants of this reaction were determined. Peroxyl radicals were generated by mixing solutions of Ce4+ sulfate and 1,1-dimethylpropyl hydroperoxide. The observed EPR signal of the peroxyl radical is a singlet with a g-factor of 2.015 ± 0.001, and a line width of ΔH = (1.36 ± 0.02) × 10?3 T for methanol and ΔH = (9.7 ± 0.2) × 10?4 T for water. The measured rate constants of (CH3)2C(O2·)CH2CH3 radical recombination at 298 K are 2kt = (3.9 ± 0.4) × 104 L mol?1 s?1 for water and 2kt = (5.2 ± 0.5) × 103 L mol?1 s?1 for methanol. A linear relationship between ln(2kt) and the Kirkwood function (ε?1)/(2ε + 1), where e is the dielectric constant of the medium, has been established, indicating an important role of nonspecific solvation in the recombination of tertiary peroxyl radicals.  相似文献   

18.
CFBr radicals produced by the reaction of atomic oxygen with F2CCFBr were monitored in a discharge flow system by fluorescence excited at 424 nm. The rate coefficients for reactions of the CFBr radicals were measured between 298 and 358 K, and the following values were obtained in units of cm3/molec·s: O2 < 2 × 10?16 at 353 K; NO < 10?14 at 298 K; F2CCFBr < 10?15 at 298 K; Cl2 (1.9 ± 0.6) × 10?12 exp(?762 ± 92/T) Br2 (1.4 ± 0.3) × 10?12 exp(?533 ± 62/T).  相似文献   

19.
Absolute and relative rate techniques were used to study the reactivity of Cl atoms with cyclohexanone in 6 Torr of argon or 800–950 Torr of N2 at 295 ± 2 K. The absolute rate experiments gave k(Cl + cyclohexanone) = (1.88 ± 0.38) × 10?10, whereas the relative rate experiments gave k(Cl + cyclohexanone) = (1.66 ± 0.26) × 10?10 cm3 molecule?1 s?1. Cyclohexanone has a broad UV absorption band with a maximum cross section of (4.0 ± 0.3) × 10?20 cm2 molecule?1 near 285 nm. The results are discussed with respect to the literature data. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 223–229, 2008  相似文献   

20.
A new oxide ion conductor,La_3GaMo_2O_(12),with a bulk conductivity of 2.7×10~(-2)S·cm~(-1) at 800 ℃ in air at-mosphere was prepared by the traditional solid-state reaction.The room temperature X-ray diffraction data could beindexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm,b=0.3224(1) nm,c=1.5741(1) nm,β=102.555(0)°,V= 0.2775(2) nm~3 and space group Pc(7).Ac impedance measurements in various atmospheres furthersupport that it is an oxide ion conductor.This material was stable in various atmospheres with oxygen partial pres-sure p(O_2)ranging from 1.0×10~5 to 1.0×10~(-7) Pa at 800 ℃.A reversible polymorphic phase transition occurred atelevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号