首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intact protein masses can be measured directly from immobilized pH gradient (IPG) isoelectric focusing (IEF) gels loaded with mammalian and prokaryotic samples, as demonstrated here with murine macrophage and Methanosarcina acetivorans cell lysates. Mass accuracy and resolution is improved by employing instruments which decouple the desorption event from mass measurement; e.g., quadrupole time-of-flight instruments. MALDI in-source dissociation (ISD) is discussed as a means to pursue top-down sequencing for protein identification. Methods have been developed to enzymatically digest all proteins in an IEF gel simultaneously, leaving the polyacrylamide gel attached to its polyester support. By retaining all gel pieces and their placement relative to one another, sample handling and tracking are minimized, and comparison to 2-D gel images is facilitated. MALDI-MS and MS/MS can then be performed directly from dried, matrix-treated IPG strips following whole-gel trypsin digestion, bottom-up methodology. Side-to-side proteomics, highlighting the link between virtual and classical 2-D gel electrophoresis, is introduced to describe a method whereby intact masses are measured from one side (the IEF gel), while proteins are identified based on analyses performed from the other side (the SDS-PAGE gel).  相似文献   

2.
We have developed a matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) based technique for the detection of intact proteins directly from immobilized pH gradient gels (IPGs). The use of this technique to visualize proteins from IPGs was explored in this study. Whole cell Escherichia coli extracts of various loadings were separated on IPGs. These IPGs were processed to remove contaminants and to achieve matrix/analyte cocrystallization on the surface of the gel. Mass spectra were acquired by scanning the surface of the gel and were assimilated into a "virtual" two dimensional (2-D) gel. This virtual 2-D gel is analogous to a "classical" 2-D gel, except that the molecular weight information is acquired by mass spectrometry rather than by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This mass spectrometry (MS) based technology exemplifies a number of desirable characteristics, some of which are not attainable with classical two-dimensional electrophoresis (2-DE). These include high sensitivity, high reproducibility, and an inherently higher resolution and mass accuracy than 2-D gels. Furthermore, there is a difference in selectivity exhibited between virtual 2-D gels and classical 2-D gels, as a number of proteins are visible in the virtual gel image that are not present in the stained gels and vice versa. In this report, virtual 2-D gels will be compared to classical 2-D gels to illustrate these features.  相似文献   

3.
Recent advances in capillary separations for proteomics   总被引:1,自引:0,他引:1  
Cooper JW  Wang Y  Lee CS 《Electrophoresis》2004,25(23-24):3913-3926
The sequencing of several organisms' genomes, including the human's one, has opened the way for the so-called postgenomic era, which is now routinely coined as "proteomics". The most basic task in proteomics remains the detection and identification of proteins from a biological sample, and the most traditional way to achieve this goal consists of protein separations performed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Still, the 2-D PAGE-mass spectrometry (MS) approach remains lacking in proteome coverage (for proteins having extreme isoelectric points or molecular masses as well as for membrane proteins), dynamic range, sensitivity, and throughput. Consequently, considerable efforts have been devoted to the development of non-gel-based proteome separation technologies in an effort to alleviate the shortcomings in 2-D PAGE while reserving the ability to resolve complex protein and peptide mixtures prior to MS analysis. This review focuses on the most recent advances in capillary-based separation techniques, including capillary liquid chromatography, capillary electrophoresis, and capillary electrokinetic chromatography, and combinations of multiples of these mechanisms, along with the coupling of these techniques to MS. Developments in capillary separations capable of providing extremely high resolving power and selective analyte enrichment are particularly highlighted for their roles within the broader context of a state-of-the-art integrated proteome effort. Miniaturized and integrated multidimensional peptide/protein separations using microfluidics are further summarized for their potential applications in high-throughput protein profiling toward biomarker discovery and clinical diagnosis.  相似文献   

4.
Manabe T 《Electrophoresis》2000,21(6):1116-1122
Analysis of proteins in complex mixtures such as cell lysates is presently performed by two-dimensional polyacrylamide gel electrophoresis under denaturing conditions (denaturing 2-D PAGE) followed by extraction of proteins from gel pieces and structural analysis of the proteins. This type of protein analysis is contributing to the correlation of information stored in DNA sequences with the structure of the product polypeptides. However, denaturing 2-D PAGE has its own limitations and it is necessary to develop various methods of protein analysis to reconstruct the total structure and function of proteins in complex systems. This review article summarizes the work in our laboratory to explore proteins in human plasma combining various electrophoretic techniques: nondenaturing and denaturing 2-D PAGE, capillary electrophoresis, and agarose gel isoelectric focusing.  相似文献   

5.
Towards a two-dimensional proteome map of Mycoplasma pneumoniae   总被引:4,自引:0,他引:4  
A Proteome map of the bacterium Mycoplasma pneumoniae was constructed using two-dimensional (2-D) gel electrophoresis in combination with mass spectrometry (MS). M. pneumoniae is a human pathogen with a known genome sequence of 816 kbp coding for only 688 open reading frames, and is therefore an ideal model system to explore the scope and limits of the current technology. The soluble protein content of this bacterium grown under standard laboratory conditions was separated by 1-D or 2-D gel electrophoresis applying various pH gradients, different acrylamide concentrations and buffer systems. Proteins were identified using liquid chromatography-electrospray ionization ion trap and matrix-assisted laser desorption/ionization-MS. Mass spectrometric protein identification was supported and controlled using N-terminal sequencing and immunological methods. So far, proteins from about 350 spots were characterized with MS by determining the molecular weights and partial sequences of their tryptic peptides. Comparing these experimental data with the DNA sequence-derived predictions it was possible to assign these 350 proteins to 224 genes. The importance of proteomics for genome analysis was shown by the identification of four proteins, not annotated in the original publication. Although the proteome map is still incomplete, it is already a useful reference for comparative analyses of M. pneumoniae cells grown under modified conditions.  相似文献   

6.
A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved and recorded using computer-aided 2-D gel electrophoresis. The protein numbers in this database differ from those reported in an earlier version due to changes in the scanning hardware (Celis et al., Electrophoresis 1990, 11, 242-254). Annotation categories reported include: "protein name" (listing 207 known proteins in alphabetical order), "basal cell markers", "differentiation markers", "proteins highly up-regulated in psoriatic skin", "microsequenced proteins" and "human autoantigens". For reference, we have also included 2-D gel (isoelectric focusing) patterns of cultured normal and psoriatic keratinocytes, melanocytes, fibroblasts, dermal microvascular endothelial cells, peripheral blood mononuclear cells and sweat duct cells. The keratinocyte 2-D gel protein database will be updated yearly in the November issue of Electrophoresis.  相似文献   

7.
This paper describes a mathematical approach applied for decoding the complex signal of two-dimensional polyacrylamide gel electrophoresis maps of protein mixtures. The method is helpful in extracting analytical information since separation of all the proteins present in the sample is still far from being achieved and co-migrating proteins are generally present in the same spot. The simplified method described is based on the study of the 2-D autocovariance function (2D-ACVF) computed on an experimental digitized map. The first part of the 2D-ACVF allows for the estimation of the number of proteins present in the sample (2D-ACVF computed at the origin) and of the separation performance (mean spot size). Moreover, the 2D-ACVF plot is a powerful tool in identifying order in the spot position, and singling it out from the complex separation pattern. This method was validated on synthetic maps obtained by computer simulation to describe 2-D PAGE real maps and reference maps retrieved from the SWISS-2DPAGE database. The results obtained are discussed by focusing on specific information relevant in proteomics: sample complexity, separation performance, and identification of spot trains related to post-translational modifications.  相似文献   

8.
The patterns of gene expression, post-translational modifications, protein/biomolecular interactions, and how these may be affected by changes in the environment, cannot be accurately predicted from DNA sequences. Approaches for proteome characterization are generally based upon mass spectrometric analysis of in-gel digested two dimensional polyacrylamide gel electrophoresis (2-D PAGE) separated proteins, allowing relatively rapid protein identification compared to conventional approaches. This technique, however, is constrained by the speed of the 2-D PAGE separations, the sensitivity limits intrinsic to staining necessary for protein visualization, the speed and sensitivity of subsequent mass spectrometric analyses for identification, and the limited ability for accurate quantitative measurements based on differences in spot intensity. We are presently developing alternative approaches for proteomics based upon the combination of fast capillary electrophoresis, or other suitable chromatographic separations, and the high mass accuracy and sensitivity obtainable with unique Fourier transform ion cyclotron resonance (FTICR) mass spectrometers available at our laboratory. Several approaches are presently being pursued; one based upon the analysis of intact proteins and the second upon approaches for global protein digestion and accurate peptide mass analysis. Quantitation of protein/peptide levels are based on using two or more stable-isotope labeled versions of proteomes which are combined to obtain precise quantitation of relative protein abundances. We describe the status of our efforts towards the development of a high-throughput proteomics capability and present initial results for application to several microorganisms and discuss our efforts for extending the developed capability to mammalian proteomes.  相似文献   

9.
Yang Y  Thannhauser TW  Li L  Zhang S 《Electrophoresis》2007,28(12):2080-2094
With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through a comparison of protein identifications using direct MALDI-TOF/TOF and LC-ESI-MS/MS analyses of 2-D gel separated proteins from cauliflower florets, we have developed an integrated approach to improve the accuracy and reliability of comparative 2-D electrophoresis. From 46 spots of interest, we identified 51 proteins by MALDI-TOF/TOF analysis and 108 proteins by LC-ESI-MS/MS. The results indicate that 75% of the analyzed spots contained multiple proteins. A comparison of hit rank for protein identifications showed that 37 out of 43 spots identified by MALDI matched the top-ranked hit from the ESI-MS/MS. By using the exponentially modified protein abundance index (emPAI) to determine the abundance of the individual component proteins for the spots containing multiple proteins, we found that the top-hit proteins from 40 out of 43 spots identified by MALDI matched the most abundant proteins determined by LC-MS/MS. Furthermore, our 2-D-GeLC-MS/MS results show that the top-hit proteins in 44 identified spots contributed on average 81% of the spots' staining intensity. This is the first quantitative measurement of the average rate of false assignment for direct MALDI analysis of 2-D gel spots using a new integrated workflow (2-D gel imaging, "2-D GeLC-MS/MS", and emPAI analysis). Here, the new approach is proposed as an alternative to traditional gel-based quantitative proteomics studies.  相似文献   

10.
Mahon P  Dupree P 《Electrophoresis》2001,22(10):2075-2085
Quantitative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is used to determine changes in individual protein levels in complex protein mixtures. To provide reliable data, the software used for 2-D gel image analysis must provide a linear response over a wide dynamic range of data output. Here, we show that Phoretix 2D Full analysis of 2-D gels stained with colloidal Coomassie Brilliant Blue G-250 can provide a linear measure of changes in protein quantity. We show using a complex mixture of Arabidopsis thaliana proteins, that this is true for essentially all focused proteins, in a data output range greater than three orders of magnitude. An analysis of the factors that affect errors in the results demonstrated that reproducibility of the data is significantly improved by user seeding, whereas it is reduced by use of the background subtraction algorithms.  相似文献   

11.
A new protein fractionation technique based on off-gel isoelectric focusing (IEF) is presented, where the proteins are separated according to their isoelectric point (pI) in a multiwell device with the advantage to be directly recovered in solution for further analysis. The protein fractions obtained with this technique have then been characterized with polymer nanoelectrospray for mass spectrometry (MS) analyses or with Bioanalyzer for mass identification. This methodology shows the possibility of developing alternatives to the classical two-dimensional (2-D) gel electrophoresis. One species numerical simulation of the electric field distribution during off-gel separation is also presented in order to demonstrate the principle of the purification. Experiments with pI protein markers have been carried out in order to highlight the kinetics and the efficiency of the technique. Moreover, the resolution of the fractionation was shown to be 0.1 pH unit for the separation of beta-lactoglobulin A and B. In addition, the isoelectric fractionation of an Escherichia coli extract was performed in standard solubilization buffer to demonstrate the performances of the technique, notably for proteomics applications.  相似文献   

12.
Over the past several years, a large effort has been focused on improvements of two-dimensional (2-D) gel electrophoresis-based proteomics technology, and on development of novel approaches for proteome analysis. Here, we describe the application of an alternative strategy for the analysis of complex proteomes. The strategy combines isoelectric focusing in immobilized pH gradient strips (in-gel IEF), mass spectrometry (MS), and bioinformatics. A protein mixture is separated by in-gel IEF, and the entire strip is cut into a set of gel sections. Proteins in each gel section are digested with trypsin, and the tryptic peptides are subjected to liquid chromatography-nanoelectrospray-quadrupole ion-trap tandem mass spectrometry (LC-ESI-MS/MS). The LC-ESI-MS/MS data are used to identify the proteins through searches of a protein sequence database. Using this in-gel IEF-LC-MS/MS strategy, we have identified 127 proteins from a human pituitary. This study demonstrates the potential of the in-gel IEF-LC-MS/MS approach for analyses of complex mammalian proteomes.  相似文献   

13.
The human plasma protein patterns obtained by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is a good model system for post-translational modifications because of the existence of several "ladders" of protein spots [Anderson, N. L., Anderson, N. G., Electrophoresis 1991, 12, 883-906], so-called "trains" of spots. Our investigation of several proteins, amongst others beta2-microglobulin and the haptoglobin chains, found the differences in isoelectric points (p/) to be due to deamidation of asparagines. After enzymatic cleavage with endopeptidases in the 2-D polyacrylamide gel, the asparagine and deamidated asparagine containing peptides were separated and quantified by reversed-phase HPLC. In order to separate these peptides, a neutral pH system was established and, as a result, the differences in hydrophobicity of asparagine-containing and deamidated asparagine-containing peptides increased. But how do deamidated asparagines contribute to the observed spot pattern? One spot in the 2-D gel consists of a mixture of protein species with the same number of deamidated asparagines but on different sequence position sites. The difference between the spots in the "ladder" is a growing number of negative charges introduced in the protein by an increasing number of deamidated asparagines. As a consequence, the mass difference between two spots is exactly 1 Da, which is shown in this paper for intact protein masses and the corresponding deamidated peptides.  相似文献   

14.
Two-dimensional gel electrophoresis (2-DE) facilitates the separation of thousands of proteins from highly complex protein mixtures and has become a central method in proteomics in recent years. In the present study, we examined the technical variability of large 2-DE gels with respect to sample preparation, electrophoresis procedure, data acquisition, and biological variation by analyzing a disease (Huntington's disease) and control state with a commercially available software package, PROTEOMWEAVER trade mark. Scatter plots and correlation coefficients were obtained to quantify both technical and biological variation. Even 2-DE gels run separately in both dimensions yielded correlation coefficients around 0.88 and deviations from the mean close to 20% for low-intensity spots. This indicates a high technical reproducibility of the 2-DE procedure developed in our laboratory. Variability within a biological condition was low and comparable to technical variation (at least 0.87). Two-dimensional (2-D) gels obtained from samples of different biological conditions (health vs. disease) achieved a variability similar to intracondition and technical variability. These findings highlight the importance of multiple gel and spot-by-spot comparisons to identify biological significant changes. Minor errors introduced by technical and biological variation allow a comparison of all gels within a study which facilitates the tackling of complex biological problems.  相似文献   

15.
Simpson DC  Smith RD 《Electrophoresis》2005,26(7-8):1291-1305
Mass spectrometry (MS)-based proteomics is currently dominated by the analysis of peptides originating either from digestion of proteins separated by two-dimensional gel electrophoresis (2-DE) or from global digestion; the simple peptide mixtures obtained from digestion of gel-separated proteins do not usually require further separation, while the complex peptide mixtures obtained by global digestion are most frequently separated by chromatographic techniques. Capillary electrophoresis (CE) provides alternatives to 2-DE for protein separation and alternatives to chromatography for peptide separation. This review attempts to elucidate how the most promising CE modes, capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF), might best be applied to MS-based proteomics. CE-MS interfacing, mass analyzer performance, column coating to minimize analyte adsorption, and sample stacking for CZE are considered prior to examining numerous applications. Finally, multidimensional systems that incorporate CE techniques are examined; CZE often finds use as a fast, final dimension before ionization for MS, while CIEF, being an equilibrium technique, is well-suited to being the first dimension in automated fractionation systems.  相似文献   

16.
As a complementary approach to genome projects, proteomic analyses have been set up to identify new gene products. One of the major challenges in proteomics concerns membrane proteins, especially the minor ones. A procedure based on the differential extraction of membrane proteins in chloroform/methanol mixtures, was tested on the two different chloroplast membrane systems: envolope and thylakoid membranes. Combining the use of classical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analyses, this procedure enabled identification of hydrophobic proteins. The propensity of hydrophobic proteins to partition in chloroform/methanol mixtures was directly correlated with the number of amino acid residues/number of putative transmembrane regions (Res/TM ratio). Regardless of the particular case of some lipid-interacting proteins, chloroform/methanol extractions allowed enrichment of hydrophobic proteins and exclusion of hydrophilic proteins from both membrane systems, thus demonstrating the versatility of the procedure.  相似文献   

17.
A two-dimensional proteome map of Shigella flexneri   总被引:14,自引:0,他引:14  
Liao X  Ying T  Wang H  Wang J  Shi Z  Feng E  Wei K  Wang Y  Zhang X  Huang L  Su G  Huang P 《Electrophoresis》2003,24(16):2864-2882
Shigella flexneri is a Gram-negative facultatively intracellular pathogen responsible for bacillary dysentery in humans. In this study, extracellular proteins from the culture medium and whole cell proteins in cellular extracts of S. flexneri 2a strain 2457T were examined by two-dimensional (2-D) gel electrophoresis using immobilized pH gradient (IPG) technology. Proteins were identified by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) in combination with Mascot search program. In total, among the 488 proteins spots processed, 388 proteins were identified. The identified proteins represented 169 genes. By comparing results of Mascot search against databases of Escherichia coli and genomes of S. flexneri 2a, one S. flexneri-specific protein was identified and one possible gap was found in 2457T genome sequences. Although this proteome map is still incomplete, it is already a useful reference for future studies involving pathogenicity, vaccine development, design of novel antibacterial drugs, etc. Proteome maps and a table of all identified proteins are available on the internet at www.proteomics.com.cn.  相似文献   

18.
Biosensor chip mass spectrometry: a chip-based proteomics approach   总被引:23,自引:0,他引:23  
Rapid advances in genomic sequencing, bioinformatics, and analytical instrumentation have created the field of proteomics, which at present is based largely on two-dimensional electrophoresis (2-DE) separation of complex protein mixtures and identification of individual proteins using mass spectrometry. These analyses provide a wealth of data, which upon further evaluation leads to many questions regarding the structure and function of the proteins. The challenge of answering these questions create a need for high-specificity approaches that may be used in the analysis of biomolecular recognition events and interacting partners, and thereby places great demands on general protein characterization instrumentation and the types of analyses they need to perform. Over the past five years we have been actively involved in interfacing two general, instrumental techniques, surface plasmon resonance-biomolecular interaction analysis (SPR-BIA) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, into a single concerted approach for use in the functional and structural characterization of proteins. Reviewed here is the recent progress made using biomolecular interaction analysis - mass spectrometry (BIA-MS) in the detailed characterization of proteins and protein-protein interactions and the development of biosensor chip mass spectrometry (BCMS) as a new chip-based proteomics approach.  相似文献   

19.
Protein analysis techniques, including 2-D electro- phoresis, image analysis, biological mass spectrometry, database search, etc., are fundamental technologies of proteomics, a front area in biochemistry and life sci- ences[1―3]. Among them image analysi…  相似文献   

20.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号