首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypericin, the major component of St. John's Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400-315 nm) - activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 microM UVA-activated hypericin does not bring about cell death, while 3 microM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular accumulation of hypericin induces a mitochondrial-associated caspase-dependent apoptotic mode of cell death. This work suggests that UVA is effective in activating hypericin and that this phototoxicity may be considered as treatment option in some cases of lentigo maligna or lentigo maligna melanoma that are too large for surgical resection.  相似文献   

2.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

3.
An hypothesis for melanoma induction is presented: UV radiation absorbed by melanin in melanocytes generates products that may activate the carcinogenic process. Products formed by UV absorption in the upper layers of the epidermis cannot diffuse down as far as to the melanocytes. Thus, melanin in the upper layer of the skin may be protective, while that in melanocytes may be photocarcinogenic. Observations that support this hypothesis include: (1) Africans with dark skin have a reduced risk of getting all types of skin cancer as compared with Caucasians, but the ratio of their incidence rates of cutaneous malignant melanoma to that of squamous cell carcinoma is larger than the corresponding ratio for Caucasians. (2) Albino Africans, as compared with normally pigmented Africans, seem to have a relatively small risk of getting cutaneous malignant melanomas compared to nonmelanomas. This is probably also true for albino and normally pigmented Caucasians. (3) Among sun-sensitive, poorly tanning persons, frequent UV exposures are associated with increased risk of melanoma, whereas among sun-resistant, well-tanning persons, increased frequency of exposure is associated with decreased melanoma risk. (4) It is likely that UVA, being absorbed by melanin, might have a melanoma-inducing effect. This is in agreement with some epidemiological investigations which indicate that sun-screen lotions may not protect sufficiently against melanoma induction. The relative latitude gradient for UVA is much smaller than that for UVB. The same is true for the relative latitude gradient of cutaneous malignant melanoma as compared with squamous cell carcinoma and basal cell carcinoma. Under the assumption that the average slopes of the curves relating incidence rates with fluences of carcinogenic UV radiation are similar for melanomas and nonmelanomas, these facts are in agreement with the assumption that UVA plays a significant role in the induction of melanomas in humans. This is in agreement with the experimental results with Xiphophorus.  相似文献   

4.
Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300-400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320-400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation.  相似文献   

5.
The photobiology of mouse melanocyte lines with different pigment genotypes was studied by measuring colony-forming ability after irradiation. The cell lines were wild-type black (melan-a) and the mutants brown (melan-b) and albino (melan-c). Four lamps emitting various UV wavelengths were used. These were germicidal (UVC, 200–280 Dm), 82.3% output at 254 nm, TL01 (UVB, 280–320 nm), 64.2% at 310–311 nm, FS20, broadband with peak output at 312 nm and Alisun-S (UVA, 320–400 nm), broadband with peak output at 350–354 nm. Appropriate filtration reduced the contaminating UVC to nonlethal levels for the longer waverange lamps. Wild-type melan-a was resistant to UVC and UVA compared to the other two cell lines, but the differences were small. The melan-c cell line was more resistant to UVB and markedly more resistant to FS20 than the pigmented lines. With the exception of FS20 responses, melan-b was more sensitive than melan-a to killing by the various UV lamps. There were more pyrimidine dimers (cyclobutane dimers and 6–4 photoproducts) produced in melan-a than in melan-c cells by UVC, UVB and FS20 lamps. Unlike melan-c, melan-a and melan-b showed a strong free radical signal of melanin character with a detectable contribution of pheomelanin-like centers. The contribution of pheome-lanin was higher in melan-b than in melan-a, while the total melanin content in these two cell lines was comparable. The abundant melanin granules of wild-type melan-a melanocytes were well melanized and ellipsoidal, whereas those of melan-b melanocytes tended to be spherical. In the albino line (melan-c) the melanocytes contained only early-stage melanosomes, all of which were devoid of melanin. The results indicate that pigment does not protect against direct effect DNA damage in the form of pyrimidine dimers nor does it necessarily protect against cell death. High pigment content is not very protective against killing by UVC and UVA, and it may photosensitize in UVB the very wavelength range that is of greatest concern with respect to the rising incidence in skin cancer, especially melanoma. It is clear from these studies that, in pigment cells, monochromatic results cannot predict polychromatic responses and that cell death from solar irradiations is a complex phenomenon that depends on more than DNA damage.  相似文献   

6.
Malignant melanoma arises from epidermal melanocytes, the cells responsible for the production of the skin pigment melanin. The photoprotective role of melanin, which is transferred to neighboring keratinocytes, in UV-induced skin carcinogenesis, specifically in nonmelanoma skin cancers, has been well documented. Although melanocyte-resident melanin is expected to offer similar protection to melanocytes from UV-induced damage, UV radiation has long been suspected to have an etiologic role in cutaneous melanoma. However, nearly three decades of efforts using a variety of in vitro and in vivo models of human skin and mouse genetic models have produced conflicting data. Epidemiologic studies have also failed to establish a definitive association between UV exposure and risk of melanoma. In this review, we evaluate the dual role of the melanin pigment as a photoprotector as well as a photosensitizer and examine the evidence for association between melanin levels (constitutive and induced) and melanoma risk. We also discuss possible reasons for the lack of signature UV mutations in melanoma oncogenes known to date and potential alternative mechanisms to explain the role of UV in melanomagenesis.  相似文献   

7.
Cultured melanocytes originating from persons with different skin phototypes were utilized for measurement of endonuclease sensitive sites induced by UVB and the determination of cell survival after UVA or UVB irradiation. During culture, the melanocytes largely maintained their phenotypic characteristics according to their original skin phototype. Total melanin concentrations were 4.9 times higher in the darker skin phototype (IV-VI) melanocytes when compared to the cells from lighter skin phototypes (I-III). Also phaeomelanin contents were higher (2.5 times) in the skin phototype (IV-VI) melanocytes which implies that the cells from light skin types contain less melanin, but a relatively high proportion of phaeomelanin. After UVB irradiation a stronger induction of endonuclease sensitive sites was found for melanocytes with a lower level of total melanin and a high content of pheomelanin. By measuring the clone forming ability in different melanocyte cultures after UVB irradiation, significant better survival was found in case of the cells with the higher melanin content. Despite the large variations in melanin content, no significant difference in survival after UVA irradiation could be demonstrated in this way. Our results suggest a protective effect of melanin for UVB and indicate the importance of the measurements of melanin content and composition when different parameters of UV-induced damage are studied in melanin producing cells.  相似文献   

8.
We investigated the inhibitory effects of a novel amphiphilic ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), synthesized from a hydrophilic ascorbic derivative, sodium-2-O-L-ascorbyl phosphate (VCP-Na), on melanogenesis in cultured human melanoma cells, normal human melanocytes, and three-dimensional cultured human skin models. Melanin synthesis in melanoma cells treated with VCP-IS-2Na at 300 muM and melanocytes treated with VCP-IS-2Na at 100 muM decreased to 23% and 52% of that in non-treated cells, respectively, and the cell viability was not affected. VCP-IS-2Na also significantly suppressed the cellular tyrosinase activity of melanoma cells and melanocytes. Melanin synthesis in human skin models was evaluated by macro- and microscopic observations of its pigmentation and quantitative measurements of melanin. Treatment of the human skin models with 1.0% VCP-IS-2Na did not inhibit cell viability, while melanin synthesis was decreased to 21% of that in the control. In contrast, L-ascorbic acid (VC) and VCP-Na did not seem to inhibit melanin synthesis and cellular tyrosinase activity. These results indicate that VCP-IS-2Na may be an effective whitening agent for the skin, and we expect the application of VCP-IS-2Na in the cosmetic industry.  相似文献   

9.
The goal of this investigation was to correlate the melanin content in human pigmentary cells with the generation of UVB-induced photoproducts and to examine the relationship between the melanin content and the removal of the photoproducts. Cultured melanocytes from light-skinned individuals synthesized less melanin and produced more cyclobutane pyrimidine dimers and 6-4 photoproducts upon UVB exposure than did melanocytes from black skin. Tyrosine-stimulated melanogenesis provided protection against DNA damage in both cell types. In another set of pigmented cell lines a ratio between eumelanin and pheomelanin was determined. The assessment of association between DNA damage induction and the quantity and quality of melanin revealed that eumelanin concentration correlated better with DNA protection than pheomelanin. Skin type-I and skin type-VI melanocytes, congenital nevus (CN)-derived cells and skin type-II melanocytes from a multiple-melanoma patient were grown in media with low or high L-tyrosine concentration. The cells were irradiated with 200 J/m2 UVB, and the levels of the photoproducts were determined immediately and after 6 and 24 h. Once again the induction of the photoproducts was mitigated by increased melanogenesis, and it was inversely correlated with the skin type. No significant differences were found for the removal of photoproducts in the cultures of skin types I and VI and CN cells. No indications of a delay in the removal of photoproducts in the melanocytes from the multiple-melanoma patient were found either.  相似文献   

10.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

11.
Abstract Melanocytes (skin type 2) and keratinocytes were irradiated with UV light of 254, 297, 302, 312 and 365 nm and the survival was measured. Clone-forming ability was chosen as the parameter for cell survival. Melanocytes were found to be less sensitive to UV light than keratinocytes (a difference of a factor 1.22-1.92 for the UV-C and UV-R wavelengths (254, 297, 301 and 312 nm) and a factor 6.71 for the UV-A wavelength (365 nm). Because melanin does not appear to protect against the induction of pyrimidine dimers the difference between melanocytes and keratinocytes in the UV-C and UV-B region could not be explained by the presence of melanin in the melanocytes. The relatively small difference can be explained by the longer cell cycle of melanocytes, which provides more time for the melanocytes to repair UV damage. In the UV-A region the difference between melanocytes and keratinocytes was much larger, suggesting that besides the longer cell cycle some additional factors must be involved in protection against UV-A light.  相似文献   

12.
The mammalian eye consists of several layers of pigmented tissues that contain melanin. The eye is a unique organ for pigment cell research because one can isolate and compare melanosomes from different tissues and embryonic origins. Retinal, iris and ciliary pigment epithelial cells are derived from the neural ectoderm, more specifically from the extremity of the embryonic optical cup, which is also the origin of the retina. In contrast, the pigment-generating cells in the choroid and in the stroma of the iris and ciliary body, uveal melanocytes, are developed from the neural crest, the same origin as the melanocytes in skin and hair. This review examines the potential functions of ocular melanin in the human eye. Following a discussion of the role of melanins in the pigment epithelium and uveal melanocytes, three specific topics are explored in detail-photo-screening protective effects, biophysical and biochemical protective effects, and the biologic and photobiologic effects of the two main classes of melanins (generally found as mixtures in ocular melanosomes)--eumelanin and pheomelanin.  相似文献   

13.
Melanosomes of the retinal pigment epithelium (RPE) are relatively long-lived organelles that are theoretically susceptible to changes induced by exposure to visible light. Here melanosomes were isolated from porcine RPE cells and subjected to high intensity visible light to determine the effects of illumination on melanosome structure and on the content and antioxidant properties of melanin. As compared to untreated melanosomes, illuminated granules showed morphologic changes consistent with photodegradation, which included variable reductions in electron density demonstrated by transmission electron microscopy (TEM), and particle fragmentation and surface disruption revealed by scanning electron microscopy (SEM) and atomic force microscopy. Illuminated melanosomes had lower melanin content, indicated by measures of absorbance and electron spin resonance (ESR) signal intensity, and reduced ability to bind iron, shown by chemical and ESR analyses. Compared to untreated melanosomes, ESR-spin trapping analyses further indicated that illuminated melanosomes show increased photogeneration of superoxide anion and reduced ability to inhibit the iron ion-catalyzed free radical decomposition of hydrogen peroxide. It appears therefore that visible light irradiation can disrupt the structure of RPE melanosomes and reduce the amount and antioxidant properties of melanin. Some of these changes occur in human RPE melanosomes with aging and the results obtained here suggest that visible light irradiation is at least partly responsible. The consequence of light-induced changes in RPE melanosomes may be a diminished capacity of melanin to help protect aged cells from oxidative damage, perhaps increasing the risk of diseases with an oxidative stress component such as age-related macular degeneration.  相似文献   

14.
Doxycycline is a commonly used tetracycline antibiotic showing the broad spectrum of antibacterial action. However, the use of this antibiotic is often connected with the risk of phototoxic reactions that lead to various skin disorders. One of the factors influencing the photosensitivity reactions is the melanin content in melanocytes. In this study, the impact of doxycycline and UVA irradiation on cell viability, melanogenesis and antioxidant defense system in cultured normal human epidermal melanocytes (HEMn‐DP) was examined. The exposure of cells to doxycycline and UVA radiation resulted in concentration‐dependent loss in melanocytes viability and induced melanin biosynthesis. Significant changes were stated in cellular antioxidant enzymes activity: SOD, CAT and GPx, which indicates alterations of antioxidant defense system. The results obtained in vitro may explain the mechanisms of phototoxic reactions that occur in normal human epidermal melanocytes in vivo after exposure of skin to doxycycline and UVA radiation.  相似文献   

15.
UVA (315–400 nm) is the most abundant form of UV radiation in sunlight and indoor tanning beds. However, much remains to be understood about the regulation of the UVA damage response in melanocytes and melanoma. Here, we show that UVA , but not the shorter waveband UVB (280–315 nm), up‐regulates adaptor protein p62 in an Nrf2‐ and reactive oxygen species (ROS )‐dependent manner, suggesting a UVA ‐specific effect on p62 regulation. UVA ‐induced p62 up‐regulation was inhibited by a mitochondria‐targeted antioxidant or Nrf2 knockdown. In addition, p62 knockdown inhibited UVA ‐induced ROS production and Nrf2 up‐regulation. We also report here a novel regulatory feedback loop between p62 and PTEN in melanoma cells. PTEN overexpression reduced p62 protein levels, and p62 knockdown increased PTEN protein levels. As compared with normal human skin, p62 was up‐regulated in human nevus, malignant melanoma and metastatic melanoma. Furthermore, p62 was up‐regulated in melanoma cells relative to normal human epidermal melanocytes, independent of their BRAF or NRAS mutation status. Our results demonstrated that UVA up‐regulates p62 and induces a p62‐Nrf2 positive feedback loop to counteract oxidative stress. Additionally, p62 forms a feedback loop with PTEN in melanoma cells, suggesting p62 functions as an oncogene in UVA ‐associated melanoma development and progression.  相似文献   

16.
Solar irradiation of a panel of human cell lines revealed three phenomena relevant to understanding the biological role of melanin; a heavily melanised melanoma line (MM418) was considerably more resistant to solar killing compared with HeLa and amelanotic melanoma cells of similar size and DNA content; MM418 cells were also resistant to killing by artificial UVB and by hydrogen peroxide generated in situ with extracellular glucose oxidase; and no difference in survival between the cell lines was found using 254 nm UV or gamma radiation. MM418 cells were resistant to sunlight when irradiated as attached monolayers but not when irradiated in suspension. Further studies showed that resistance to solar radiation in MM418 cells was not due to less DNA damage, as judged by inhibition of semiconservative DNA synthesis, or to enhanced constitutive or induced repair determined by reactivation of irradiated adenovirus. These results indicate that melanisation protects human cells from solar UVB in vitro and that the mechanism is associated with protection from hydrogen peroxide-type damage rather than direct shielding of DNA.  相似文献   

17.
We compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Irradiation of treated and untreated cells was therefore designed to establish whether intracellular melanin protected cells from UV-induced DNA damage. In experiments described here, we determined cytosine-thymine (C-T) as well as thymine-thymine dimer levels (T-T) by high pressure liquid chromatography in cholera toxin-treated and untreated Cloudman S91 mouse melanoma cells after irradiation with UVC (less than 290 nm) and UVB light (290-320 nm). Surprisingly, induction of melanization had no effect on the formation of pyrimidine dimers by UVC or UVB irradiation. These results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex.  相似文献   

18.
Cutaneous pigmentation is the major photoprotective mechanism against the carcinogenic and aging effects of UV. Epidermal melanocytes synthesize the pigment melanin, in the form of eumelanin or pheomelanin. Synthesis of the photoprotective eumelanin by human melanocytes is regulated mainly by the melanocortins alpha-melanocortin (alpha-MSH) and adrenocorticotropic hormone (ACTH), which bind the melanocortin 1 receptor (MC1R) and activate the cAMP pathway that is required for UV-induced tanning. Melanocortins stimulate proliferation and melanogenesis and inhibit UV-induced apoptosis of human melanocytes. Importantly, melanocortins reduce the generation of hydrogen peroxide and enhance repair of DNA photoproducts, independently of pigmentation. MC1R is a major contributor to the diversity of human pigmentation and a melanoma susceptibility gene. Certain allelic variants of this gene, namely R151C, R160W and D294H, are strongly associated with red hair phenotype and increased melanoma susceptibility. Natural expression of two of these variants sensitizes melanocytes to the cytotoxic effect of UV, and increases the burden of DNA damage and oxidative stress. We are designing potent melanocortin analogs that mimic the effects of alpha-MSH as a strategy to prevent skin cancer, particularly in individuals who express MC1R genotypes that reduce but do not abolish MC1R function, or mutations in other melanoma susceptibility genes, such as p16.  相似文献   

19.
INHIBITION OF DNA REPAIR SYNTHESIS BY SUNLIGHT   总被引:1,自引:0,他引:1  
Abstract— DNA repair synthesis as determined by thymidine incorporation in the presence of hydroxyurea reached a much lower maximum level after solar compared with UVC exposure in five human melanoma cell lines, in HeLa cells, and in two human fibroblast strains. This finding was confirmed by determination of unscheduled DNA synthesis where both the number of labelled nuclei and grain count per nucleus were lower in sun-exposed cells. In a cloned human melanoma line (MM253cl), glass-filtered sunlight inhibited UVC repair synthesis, and solar UVB alone induced a higher level of repair synthesis than either complete sun or solar UVA plus solar UVB. The fluence response of filtered sunlight for inhibition of UVB (sunlamp) and UVC showed that most inhibition was obtained at low fluences (5-10 min), further exposure giving a plateau at 40% of the original level. Ultraviolet C and sunlight inactivated adenovirus 5 giving F 0 values for virus survival 40-fold higher than for cell survival. Replication of either UVC- or solar-irradiated virus was not affected by prior irradiation of cells with glass-filtered sunlight. Stathmokinetic analysis of cell cycle progression by DNA flow cytometry showed that UVC and sunlamp UVB retarded cell movement from the G1 and S phases whereas equitoxic sunlight and glass-filtered sunlight (nontoxic) had no effect. These results indicate that solar UVA at low environmental fluences partially inhibits UVB repair synthesis in a range of human cell types but does not affect the replication of a UVB- or UVC-damaged virus when applied to the genome alone or to the host cell.  相似文献   

20.
Normal melanocytes produce specialized subcellular organelles called melanosomes within which the biochemical processes of melanogenesis occurs. During sunlight-induced melanogenesis, the melanocyte-specific enzyme tyrosinase catalyzes the oxidative polymerization of 3,4-dihydroxyphenyl-alanine (DOPA) to melanin. Nucleophilic addition of cysteine to tyrosinase-generated dopaquinone leads to the formation of cysteinyldopas, precursors of pheomelanin and excreted by-products of eumelanogenesis. Under conditions of low sulfhydryl content, dopaquinone undergoes a 1,4 intramolecular cycloaddition to yield, after further oxidation, 5,6-dihydroxyindoles and/or 5,6-dihydroxy-2-carboxyindoles. These indolic melanogenic intermediates and their O-methylated metabolites, like cysteinyldopas, are excreted by actively pigmenting as well as dormant melanocytes. Indeed, it has been determined that in humans, the serum and urine concentrations of these melanogenic metabolites increase dramatically following exposure to sunlight, UVA (315-400 nm), UVB (290-315 nm) exposure, as well as during PUVA therapy and in melanoma patients, and thus have proved to be excellent biochemical markers of normal and pathological melanocyte function. While controlled light exposure or PUVA therapy generally lead to 100-300% increases in 5-S-cysteinyldopa (5SCD) and 5-methoxy-6-hydroxyindole-2-carboxylic acid (6HMICA) serum levels (normal concentration about 4–16 nmol l-1), the local concentrations in the skin and especially in the actively pigmenting melanocyte may be as high as 200 μM. Evidence is presented to document that a number of catecholic melanin precursors, including cysteinyldopas and dihydroxyindoles, are photochemically unstable in the presence of biologically relevant ultraviolet radiation (i.e. wavelengths ± 300 nm). Initial photochemical processes involve free radical production; continued photolysis yields polymeric photoproducts. Radicals produced during melanogenic metabolite photolysis have been identified by ESR spin trapping, laser flash photolysis and pulse radiolysis techniques and include hydrated electrons (eaq), hydrogen atoms (H'), hydroxyl radicals (OH), semiquinones, aryl thiyl (ArS), and alanyl carbon-based radicals. In vitro investigations of the potential photobiological significance of these reactions have demonstrated photolysis of cysteinyldopas may lead to photoinitiated DNA binding and single strand break induction. The above mentioned radical species may also damage proteins and initiate lipid peroxidation. Definitive evidence for the occurrence of these phototoxic reactions in vivo is currently unavailable, however our in vitro studies suggest a possible role for melanogenic metabolite photolysis in acute and chronic solar responses of human skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号