首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behavior of polymethylmethacrylate (PMMA) particles suspensions in glycerine–water mixtures has been investigated by means of steady and dynamic rheometry in this work. The shear rheology of these suspensions demonstrates a strong shear thickening behavior. The variations of shear viscosity with the volume fraction and ratios of glycerine to water are discussed. The effect of volume fraction can be qualitatively explained using a clustering mechanism, which attributes the phenomena to the formation of temporary, hydrodynamic clusters. The influence of interactions between glycerine–water mixtures and PMMA particles on shear thickening is investigated by varying the ratio of glycerine to water. In addition, the reversible and thixotropic properties of suspensions of PMMA dispersed in glycerine–water (3:1) mixtures are also investigated, and the results demonstrate the excellent reversible and thixotropic properties of PMMA particle suspensions.  相似文献   

2.
A viscosity model for suspensions of rigid particles with predictive capability over a wide range of particle volume fraction and shear conditions is of interest to quantify the transport of suspensions in fluid flow models. We study the shear viscosity of suspensions and focus on the effect of particle aspect ratio and shear conditions on the rheological behavior of suspensions of rigid bi-axially symmetric ellipsoids (spheroids). We propose a framework that forms the basis to microscopically parameterize the evolution of the suspension microstructures and its effect on the shear viscosity of suspensions. We find that two state variables, the intrinsic viscosity in concentrated limit and the self-crowding factor, control the state of dispersion of the suspension. A combination of these two variables is shown to be invariant with the imposed shear stress (or shear rate) and depends only on the particle aspect ratio. This self-similar behavior, tested against available experimental and numerical data, allows us to derive a predictive model for the relative viscosity of concentrated suspensions of spheroids subjected to low (near zero) strain rates. At higher imposed strain rates, one needs to constrain one of the state variables independently to constrain the state of dispersion of the suspension and its shear dynamic viscosity. Alternatively, the obtained self-similar behavior provides the means to estimate the state variables from the viscosity measurements made in the laboratory, and to relate them to microstructure rearrangements and evolution occurring during deformation.  相似文献   

3.
 The influence of preshearing on the rheological behaviour of model suspensions was investigated with a stress-controlled cone-and-plate rheometer. The used matrix fluids showed Newtonian behaviour over the whole range of applied shear stresses. Highly monodisperse spherical glass spheres with various particle diameters were used as fillers. By applying steady preshearing at a low preshear stress, where a diffusion of particles can be expected, it was found for all model suspensions investigated at volume fractions ranging from 0.20 to 0.35 that the time-temperature superposition in the steady shear and in the dynamic mode holds within the chosen temperature range. Furthermore, all presheared model suspensions displayed a high and a low frequency range which are either separated by a shoulder or by a plateau value of G′ at intermediate frequencies. It could clearly be demonstrated that the low frequency range strongly depends on the preshear conditions. Hence, the features observed in the low frequency range can be attributed to a structure formation of a particulate network. In the high frequency range a frequency-dependent behaviour was observed which obeys the classical behaviour of Newtonian fluids (G′∝ω2, G′′∝ω). The resulting temperature shift factors from the dynamic and the steady shear mode are identical and independent of the volume fraction and the particle size of the filler. Received: 29 November 2000 Accepted: 12 July 2001  相似文献   

4.
Rheological characteristics of gum karaya suspensions which is proposed as a fracturing fluid were investigated with the main objective to determine the yield stress and other rheological parameters using various models. The flow hysteresis confirms the thixotropic behavior of fluid with increased structural breakdown at higher concentration and temperature. An empirical model developed for the studied samples accurately predicts the temperature and polymer concentration sensitivity of the apparent viscosity. The Herschel-Bulkley model showed the best fit to the experimental data; however, the yield stress obtained from some of the samples using nonlinear regression (NL) method reported physically insignificant, negative values. The proposed optimization technique, i.e., “Particle Swarm Optimization” offered the most realistic results with faster convergence over genetic algorithm making it a better choice. The oscillatory study provided more reliable yield stress values and revealed the thermogelation behavior of polymer suspensions making it suitable for high-temperature fracturing application.  相似文献   

5.
This study presents the results from the rheological measurement of clay suspensions using vane geometry in a wide gap configuration. It focuses on how measurement of viscosity cannot be effective for two reasons: the limits of the vane geometry itself and the limits of the material depending on its content of solid particles. Image analysis of the flow while shearing the material is carried out to relate the flow behavior. Several approaches to compute the shear flow curve from torque-rotational velocity data are used. The results demonstrate that the applied setpoint while applying a logarithmic shear rate ramp can be very different from the calculated shear rate from existing theories. Depending on the solid volume fraction of the particles in the mixture, we relate the macroscopic behavior using image analysis and the shear flow curves to the rheophysical regime of the flow of the suspensions. Therefore, this paper has two simultaneous goals: the first one is to describe the physical phenomena which control macroscopic behavior and the second one is to highlight the limits of the vane geometry for viscosity measurement of mineral suspensions like kaolinite pastes.  相似文献   

6.
A non-deterministic multiple scale approach based on numerical solution of the Monte-Carlo master equation on atomic lattices solved together with a standard finite-element formulation of solid mechanics is discussed. The approach is illustrated in application to long-term evolutionary processes of volume diffusion, precipitation and creep cavity self-healing in nanocrystalline austenite (Fe fcc) samples. A two-way mechanokinetic coupling is achieved through implementation of strain-dependent diffusion rates and dynamic update of the finite element model based on atomic structure evolution. Effect of macroscopic static loading and cavity geometry on the total healing time is investigated. The approach is widely applicable to the modeling and characterization of advanced functional materials with evolutionary internal structure, and emerging behavior in material systems.  相似文献   

7.
We present analyses to provide a generalized rheological equation for suspensions and emulsions of non-Brownian particles. These multiparticle systems are subjected to a steady straining flow at low Reynolds number. We first consider the effect of a single deformable fluid particle on the ambient velocity and stress fields to constrain the rheological behavior of dilute mixtures. In the homogenization process, we introduce a first volume correction by considering a finite domain for the incompressible matrix. We then extend the solution for the rheology of concentrated system using an incremental differential method operating in a fixed and finite volume, where we account for the effective volume of particles through a crowding factor. This approach provides a self-consistent method to approximate hydrodynamic interactions between bubbles, droplets, or solid particles in concentrated systems. The resultant non-linear model predicts the relative viscosity over particle volume fractions ranging from dilute to the the random close packing in the limit of small deformation (capillary or Weissenberg numbers) for any viscosity ratio between the dispersed and continuous phases. The predictions from our model are tested against published datasets and other constitutive equations over different ranges of viscosity ratio, volume fraction, and shear rate. These comparisons show that our model, is in excellent agreement with published datasets. Moreover, comparisons with experimental data show that the model performs very well when extrapolated to high capillary numbers (C a?1). We also predict the existence of two dimensionless numbers; a critical viscosity ratio and critical capillary numbers that characterize transitions in the macroscopic rheological behavior of emulsions. Finally, we present a regime diagram in terms of the viscosity ratio and capillary number that constrains conditions where emulsions behave like Newtonian or Non-Newtonian fluids.  相似文献   

8.
This paper presents results on the rheological behaviour of suspensions of two kinds of TiO2 particles in two different polymer solutions. The particles differ in their hydrophilic or hydrophobic properties. The dispersing media are a solution of high molecular weight polyisobutylene in decalin and a solution of a low molecular weight polybutene in decalin. The concentrations of polymer are adjusted in order to get the same zero shear viscosity. The shear viscosity measurements display an apparent yield stress in some cases. The existence and the values of the yield stress depend on the volume fraction of solid particles and on the type of particles. The evolution of the intrinsic viscosity and of the maximum packing fraction vs the shear rate is interpreted in terms of evolution of the size and of the shape of aggregates of particles under shear. The effect of temperature on the development of the yield stress is also discussed. The results are completed by microscopic observations.  相似文献   

9.
Liquid-phase migration in highly concentrated suspensions undergoing constant-force squeeze flow is modeled numerically by taking into account the time and position dependence of the rheological properties due to changes in the volume fraction of solids. This is done by coupling the equation of motion for a non-Newtonian material that behaves approximately as a Bingham plastic with a continuity equation that includes diffusive flux. The developed model was first tested with experimental data and then used to study the effect of various parameters on liquid-phase migration.  相似文献   

10.
A systematic study of the rheological properties of solutions of non-motile microalgae (Chlorella vulgaris CCAP 211-19) in a wide range of volume fractions is presented. As the volume fraction is gradually increased, several rheological regimes are observed. At low volume fractions (but yet beyond the Einstein diluted limit), the suspensions display a Newtonian rheological behaviour and the volume fraction dependence of the viscosity can be well described by the Quemada model (Quemada, Eur Phys J Appl Phys 1:119–127, 1997). For intermediate values of the volume fraction, a shear thinning behaviour is observed and the volume fraction dependence of the viscosity can be described by the Simha model (Simha, J Appl Phys 23:1020–1024, 1952). For the largest values of the volume fraction investigated, an apparent yield stress behaviour is observed. Increasing and decreasing stress ramps within this range of volume fractions indicate a thixotropic behaviour as well. The rheological behaviour observed within the high concentration regime bears similarities with the measurements performed by Heymann and Aksel (Phys Rev E 75:021505, 2007) on polymethyl methacrylate suspensions: irreversible flow behaviour (upon increasing/decreasing stresses) and dependence of the flow curve on the characteristic time of forcing (the averaging time per stress values). All these findings indicate a behaviour of the microalgae suspensions similar to that of suspensions of rigid particles. A deeper insight into the physical mechanisms underlying the shear thinning and the apparent yield stress regime is obtained by an in situ analysis of the microscopic flow of the suspension under shear. The shear thinning regime is associated to the formation of cell aggregates (flocs). Based on the Voronoi analysis of the correlation between the cell distribution and cell sizes, we suggest that the repulsive electrostatic interactions are responsible for this microscale organisation. The apparent yield stress regime originates in the formation of large-scale cell aggregates which behave as rigid plugs leading to a maximally random jammed state.  相似文献   

11.
Rheological properties of poly(ethylene oxide) nanocomposites embedded with carbon nanotubes (CNTs) were investigated in the present study. It was found that the CNT nanocomposites had a higher effective filler volume fraction than the real filler volume fraction, which yielded a drastic enhancement of shear viscosity. As the CNT loading in the nancomposites increases, non-Newtonian behavior was observed at the low-shear-rate region in the steady shear experiments. Oscillatory dynamic shear experiments showed that more addition of the CNTs led to stronger solidlike and nonterminal behaviors. To identify a dispersion state of the CNTs, field emission scanning electron spectroscopy and transmission electron microscopy were adopted and thermal analysis was also performed by using differential scanning calorimetry. The existence of percolated network structures of the CNTs even at a low CNT loading was verified by rheological properties and electrical conductivities.  相似文献   

12.
The purpose of this paper is to study the dynamic behavior of soft ground including a porous layer by considering the porosity change. In order to take the porosity change into account, the concept of the volume fraction, which has been proposed in continuum mechanics, is introduced. The constitutive equations presented by Bowen are applied to the analysis of the porous media. According to Bowen's theory, the porosity is considered as a variable called the volume fraction and has its own constitutive equation. The constitutive equation of the volume fraction has thermoelastic equation coefficients and is determined by the strains of the solid and the fluid. This means that the compressibilities of the solid and the fluid are considered. When the special condition is assumed, Bowen's theory can contain Biots's theory, which has been applied in earthquake engineering. The wave propagation in the ground including a porous layer, modeled by Bowen's theory, is studied and compared with that of Biot's theory. One-dimensional attenuation and surface amplitude are calculated. The effect of the volume fraction is discussed with respect to the compressibilities of the solid and the fluid.  相似文献   

13.
许晓飞  童松豪  张达  董超  刘凤霞  魏炜  刘志军 《力学学报》2021,53(11):3071-3079
活性流体在用于开发新材料方面具有巨大潜力, 满足这一需求就要定量掌握活性流体所表现的特殊力学行为, 特别是流变行为. 扩展布朗运动方程, 建立自驱动活性粒子的运动模型, 基于反向非平衡法确定活性流体的黏度, 考察活性粒子体积分数、直行速度和转向扩散系数对活性流体流变行为的影响规律, 确定活性流体特殊流变行为的形成机理. 结果表明, 活性流体的流变曲线可被划分为黏度下降区、过渡区和牛顿区; 活性粒子体积分数越高, 活性流体的非牛顿特性越显著, 活性粒子的直行运动引起活性流体在低剪切速率区域黏度下降, 直行运动和转向运动的耦合作用导致中剪切速率区域流变曲线非单调变化, 活性粒子频繁发生转向运动会导致活性流体非牛顿特性受到抑制; 活性流体的宏观流变学特性和粒子的涨落直接相关, 活性粒子体积分数越高、直行速度越快和转向扩散系数越小, 活性流体中活性粒子越容易产生显著的涨落; 低剪切速率区域内活性粒子涨落明显, 随着剪切速率增大, 活性粒子的涨落逐渐被削弱, 粒子的聚集结构不断被破坏, 最终体系的流变行为类似一般被动流体.   相似文献   

14.
The rheological characterizations of concentrated suspensions are generally carried out assuming “well-mixed” suspensions. However, the variation of the concentration distributions of the ingredients of the formulation, i.e., the “goodness of mixing”, the size and shape distributions of the particle clusters and the rheological behavior of the suspension all depend on the thermo-mechanical history that the suspension is exposed to during the mixing process. Here, various experimental tools are used for the characterization of the degree of mixedness (concentration distributions) of various ingredients along with the characterization of rheological material functions, wall slip behavior and the maximum packing fraction of a graphite/elastomer suspension. The degree of mixedness values of the ingredients of the suspensions processed using batch and continuous processes and under differing operating conditions were characterized quantitatively using wide-angle X-ray diffraction and thermo gravimetric analysis and were elucidated under the light of the electrical properties of the suspension as affected by the mixing process. Upon achieving better homogeneity of the graphite particles and the binder and decreases in the size and breadth of the size distributions of particle clusters (as inferred from electrical measurements and maximum packing fraction values), the elasticity (storage modulus) and the shear viscosity (magnitude of the complex viscosity from small-amplitude oscillatory shear and shear viscosity from steady torsional and capillary rheometry) of the suspension decreased significantly and the wall slip velocity values increased. These findings demonstrate the intimate relationships that exist between the rheological behavior of concentrated suspensions and the thermo-mechanical history that they are exposed to during the processing stage and suggest that the preparation conditions for suspensions should be carefully selected and well documented to achieve reproducible characterization of rheological material functions.  相似文献   

15.
 The effect of a low-molecular-weight physically adsorbed poly(ethylene oxide) on the rheological behavior of aqueous dispersions of silica particles (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing polymer concentration in the system at different volume fractions of the particles. Experiments were performed in the absence of salt and just the pH of the dispersion was adjusted to 9.5, a condition at which the system is electrostatically stable and electrostatic repulsive forces are long range in nature. It was observed that the shear viscosity and the linear viscoelastic functions of the dispersion at 55 vol% increase initially through the addition of polymer, reach a maximum, and then decrease to a minimum with further addition of polymer to the system. At higher polymer concentrations, there may be an increase in the viscosity of the dispersion owing to an increase in the concentration of free polymer chains in the medium causing depletion flocculation in the system. The increase in the rheological behavior of the dispersion at low polymer coverage is attributed to polymer bridging flocculation caused by a low-molecular-weight poly(ethylene oxide) in the system. Comparison of the data given here with the results of earlier studies on the viscosity behavior of the system in the presence of salt (0.01 M) indicates that the range of the electrostatic repulsion has a significant role in the rheological behavior of the system. Received: 7 February 2001 Accepted: 18 October 2001  相似文献   

16.
Rheological properties of peanut butter   总被引:2,自引:0,他引:2  
The rheological properties of two types of commercial peanut butter have been studied. Both products are concentrated suspensions, and differ by the presence of additives. The first type, referred to as “100% peanuts,” is an unstabilized suspension consisting of solid peanut particles in peanut oil which is a Newtonian fluid. The second type, referred to as “smooth,” consists of the same suspension stabilized with a vegetable oil and contains other ingredients such as salt and sugar in very small quantities. A mean volume particle diameter of 6.6 μm has been determined, the particle diameter distribution was found to be narrow, and the solids volume fraction was estimated to be 0.6. Slip encountered in rheometry was greatly reduced by gluing sandpaper to the parallel plates of the rheometer. Both samples behaved like plastic materials and apparent yield stresses of 24 Pa and 370 Pa have been determined for the unstabilized and the stabilized suspensions, respectively. No linear domain was found for both suspensions and the non-linearity was confirmed by deformed Lissajous curves and higher odd harmonics in the output signal of small amplitude oscillatory shear experiments. The stabilized suspension behaved more like a solid, the elastic modulus being larger than the loss modulus and almost independent of the frequency. This solid-like behavior is supposedly caused by strong repulsive (steric) forces induced by the stabilizing agent. Received: 29 September 1999 Accepted: 9 August 2000  相似文献   

17.
In this paper, the network structure of multiwalled carbon nanotube (MWCNT)?Cepoxy suspensions was investigated under the influence of flow history and temperature using the scaling behavior of the linear viscoelastic properties of the concentrated suspensions above their gel point. It is shown that the suspensions have a self-similar fractal structure with the dimension of about 2.15, characteristic of weakly flocculating suspensions and their elasticity originates from inter- and intra-floc links of nanotubes. From the scaling behavior of the flow-induced storage modulus and the critical strain for the limit of linearity, it is shown that the fractal dimension and so the superstructure of the network did not change significantly under the influence of the flow history due to the initial compact structure of the network before pre-shearing. The time?Ctemperature superposition principle was verified for the CNT suspensions and the shift factor was accounted for by an Arrhenius equation. The reduced storage and loss moduli of the suspensions using the complex modulus of the neat epoxy were shown to increase with temperature revealing more inter-particle interactions as the temperature was raised. However, it was impossible to conclude on the changes of the fractal dimensions with temperature.  相似文献   

18.
The lattice Boltzmann method is developed to simulate the pressure-driven flow and electroosmotic flow of non-Newtonian fluids in porous media based on the representative elementary volume scale. The flow through porous media was simulated by including the porosity into the equilibrium distribution function and adding a non-Newtonian force term to the evolution equation. The non-Newtonian behavior is considered based on the Herschel–Bulkley model. The velocity results for pressure-driven non-Newtonian flow agree well with the analytical solutions. For the electroosmotic flow, the influences of porosity, solid particle diameter, power law exponent, yield stress and electric parameters are investigated. The results demonstrate that the present lattice Boltzmann model is capable of modeling non-Newtonian flow through porous media.  相似文献   

19.
The rheological properties of molten low-density polyethylene/metaboric acid blends were studied. It was found that the blend behavior can be rather different, depending on volume fraction of the inorganic component. Specifically, at some concentration of metaboric acid, the dynamic moduli and the Newtonian viscosity of the blends demonstrate a jump-like change. The concentration threshold depends on temperature and equals to 21.9 and 14.1 vol %, at 150 and 180 °C, respectively. In the concentration range below the threshold, the gain in the content of inorganic component results in an enhancement of the blend dynamic moduli and viscosity, without changing the general character of the rheological behavior of composition in the region of linear response. On the other hand, at higher concentrations of metaboric acid, the yield stress is observed, and the elastic modulus in the linear region of mechanical behavior becomes virtually independent of frequency. It was suggested that the rheological behavior of blends is related to a spontaneous change in their structure as well as planar molecular structure of the inorganic component.  相似文献   

20.
The rheological properties of dense silica in water suspensions (approx. 50% solids by volume) containing additions of metal oxides were examined. Metal oxides used were ferric, zinc and stannic. To prevent settling, testing was performed in a rheometer which was modified to provide for continual stirring of the materials. Relatively small oxide additions had the effect of thickening the mixtures and making them non-Newtonian. Different rate-limiting steps for flow were identified depending on the particular mixture, testing temperature and shear strain rate. Flow could be described using empirical equations which are identical to those often used to describe plastic flow in solid crystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号