首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
For increased efficiency of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), new types of membranes have to be developed. This approach has been realized by preparing hybrid membranes containing SO3H-functionalized mesoporous Si-MCM-41 as hydrophilic inorganic modifier in a polysiloxane matrix exhibiting sulfonic acid groups and basic heterocyclic groups like benzimidazole. The proton conductivity of sulfonated particles was modelled on the atomic scale in order to understand the influence of the density of sulfonic acid groups and of the presence of water molecules. The different hybrid membranes are characterized concerning their thermal stability, water uptake, and proton conductivity. Whereas the proton conductivity of well-established, but expensive and at >120 °C not long-time stable Nafion membranes continuously decreases with increasing temperature, the polysiloxane membranes, which suffer from a low-proton conductivity at around 100 °C, recover at about 120 °C due to intrinsic proton transport. At 180 °C the pure polysiloxane shows a proton conductivity which is only one order of magnitude lower than that of Nafion. Moreover, if the polysiloxane membrane contains additionally 10 wt.% of an SO3H-modified Si-MCM-41, the proton conductivity of such hybrid membrane at temperatures >180 °C and low relative humidity <10% is higher than that of Nafion membranes by a factor of 10.  相似文献   

2.
Sulfonated poly(aryl ether ketone) (sPAEK) synthesized by LG Chem. was confirmed by FT-IR. To estimate the thermal stability, glass transition temperature and decomposition temperature were investigated. They showed that sPAEK had good thermal properties. The proton conductivity, methanol permeability and water uptake of sPAEK were also measured. Nafion/sulfonated poly(aryl ether ketone) composite membranes were prepared by blending two materials. The blend ratios of sPAEK and Nafion were 2:1, 3:1, 5:1, and 7:1. The blend membranes showed phase separated morphology since they became immiscible during the solvent evaporation process. Due to the differences in specific gravity and solvent concentration profile during the solvent evaporation process, the upper region had lower Nafion volume fraction with smaller domains and the lower region had higher Nafion volume fraction with larger domains. Mechanical properties such as the stress at break, yield stress, Young's modulus, and elongation at break were measured. The sPAEK had better mechanical properties than Nafion. The mechanical properties increased with increasing sPAEK content. Proton conductivity and methanol permeability of the blend membranes were lower than those of Nafion. Both decreased with decreasing Nafion content. Since the methanol permeability of sPAEK was lower than that of Nafion, sPAEK acted as the methanol barrier. Water uptake of sPAEK was higher than that of Nafion.  相似文献   

3.
We prepared novel proton‐conductivity membranes based on blends of sulfonated polyimides. The blend membranes were prepared from a sulfonated homopolyimide and a sulfonated copolyimide with a solvent‐casting method. The proton conductivities of the blend membranes were measured as functions of the temperature with four‐point‐probe electrochemical impedance spectroscopy. The conductivity of the membranes strongly depended on the sulfonated homopolyimide content and increased with an increase in the content. The proton conductivity of all the blended membranes indicated a higher value than that determined in Nafion at 80 °C, and this may mean that the proton transfer in the blend membranes is responsible for the ionic channels induced by the hydrophobic and hydrophilic domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1325–1332, 2007  相似文献   

4.
This report describes a study of the effect of SiO2 nanopowders on the mechanism of ionic motion and interactions taking place in hybrid inorganic-organic membranes based on Nafion. Five nanocomposite membranes of the formula [Nafion/(SiO2)x] with SiO2 ranging from 0 to 15 wt % were prepared by a solvent casting procedure. TG measurements demonstrated that the membranes are thermally stable up to 170 degrees C but with the loss water it changes the cluster environments and changes the conductivity properties. MDSC investigations in the 90-300 degrees C temperature range revealed the presence of three intense overlapping endothermal peaks indicated as I, II, and III. Peak I measures the order-disorder molecular rearrangement in hydrophilic polar clusters, II corresponds to the endothermic decomposition of -SO3 groups, and III describes the melting process in microcrystalline regions of hydrophobic fluorocarbon domains of the Nafion moiety. ESEM with EDAX measurements revealed that the membranes are homogeneous materials with smooth surfaces. DMA studies allowed us to measure two relaxation modes. The mechanical relaxation detected at ca. 100 degrees C is attributed to the motion of cluster aggregates of side chains and is diagnostic for R-SO3H...SiO2 nanocluster interactions. DMA disclosed that at SiO2/-SO3H (psi) molar ratios lower than 1.9, the oxoclusters act to restrict chain mobility of hydrophobic domains of Nafion and the dynamics inside polar cages of [Nafion/(SiO2)x] systems; at psi higher than 1.9, the oxoclusters reduce the cohesiveness of hydrophilic polar domains owing to a reduction in the density of cross-links. FT-IR and FT-Raman studies of the [Nafion/(SiO2)x] membranes indicated that the fluorocarbon chains of Nafion hydrophobic domains assume the typical helical conformation structure with a D(14pi/15) symmetry. These analyses revealed four different species of water domains embedded inside polar cages and their interconnecting channels: (a) bulk water [(H2O)n]; (b) water solvating the oxonium ions directly interacting with sulfonic acid groups [H3O+...SO3(-)-].(H2O)n; (c) water aggregates associated with H3O+ ions [H3O+.(H2O)n]; and (d) low associated water species in dimer form [(H2O)2]. The conductivity mechanism and relaxation events were investigated by broadband dielectric spectroscopy (BDS). [Nafion/(SiO2)x] nanocomposite membranes were found to possess two different molecular relaxation phenomena which are associated with the alpha-relaxation mode of PTFE-like fluorocarbon domains and the beta-relaxation mode of acid side groups of the Nafion component. Owing to their strong coupling, both these relaxation modes are diagnostic for the interactions between the polar groups of the Nafion host polymer and the (SiO2)x oxoclusters and play a determining role in the conductivity mechanism of the membranes. The studies support the proposal that long-range proton charge transfer in [Nafion/(SiO2)x] composites takes place due to a mechanism involving exchange of the proton between the four water domains. This latter proton transfer occurs owing to a subsequent combination of domain intersections resulting from the water domain fluctuations induced by the molecular relaxation events of host Nafion polymer.  相似文献   

5.
The high-temperature morphology of supported liquid membranes (SLMs) prepared from perfluorinated membranes such as Nafion and Hyflon and hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-TFSI) has been investigated by small-angle X-ray scattering (SAXS). Proton conductivity results of SLMs before and after leaching show an increase in conductivity with temperature up to 160 °C in an anhydrous environment. DSC results show that crystallites within perfluorinated membranes are thermally stable up to 196 °C. High-temperature SAXS results have been used to correlate structure and morphology of supported liquid membranes with high-temperature conductivity data. The ionic liquid essentially acts as a proton solvent in a similar way to water in hydrated Nafion membranes and increases size of clusters, which allow percolation to be achieved more easily. The cation of the ionic liquid interacts with sulfonate groups within ionic domains through electrostatic interactions and displaces protons. Protons can associate with free anions of the ionic liquid, which are loosely associated with cations and can transport by hopping from anion sites within the membrane. The ionic liquid contributes to proton conductivity at high temperature through achievement of long-range ordering and subsequent percolation.  相似文献   

6.
We have prepared nanocomposite proton exchange membranes (PEMs) based on Nafion with sulfonic acid functionalized zeolite beta (AFB) as an additive. 2.5 and 5 wt% AFB composite membranes possess proton conductivity/methanol permeability (selectivity) ratios as much as 93% higher than commercial Nafion 117 at 21 °C, and 63% higher at 80 °C. These 2.5 and 5 wt% AFB composite membranes also outperform commercial Nafion 117 in direct methanol fuel cell performance evaluations. The composite membranes are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, four-electrode impedance for proton conductivity, two-compartment permeation for methanol crossover, and direct methanol fuel cell performance.  相似文献   

7.
In present work, hollow silica spheres (HSS)/Nafion® composite membranes were prepared by solution casting. The thermal properties, water retention, swelling behavior and proton conductivity of the composite membranes were explored. It was found that HSS dispersed well at micrometer scale in the obtained composite membranes by SEM and TEM observation. Thermal properties of composite membranes were improved than that of recast Nafion® membrane. Compared with the recast Nafion® membrane, the composite membranes showed higher water uptake and lower swelling degree at the temperature range from 40 to 100 °C. At the same HSS loading, the smaller the diameter of HSS in composite membranes, the more the water uptake, however, the swelling degree of composite membranes was increased. The proton conductivity of the composite membrane with 3–5 wt.% HSS (120 and 250 nm) increased distinctively at above 60 °C, reached the optimal value at 100 °C, and decreased slowly when the temperature exceeded 100 °C.  相似文献   

8.
Nafion/sulfonated poly(phenylmethyl silsesquioxane) (sPPSQ) composite membranes are fabricated using homogeneous dispersive mixing and a solvent casting method for direct dimethyl ether fuel cell (DDMEFC) applications operated above 100 °C. The inorganic conducting filler, sPPSQ significantly affects the characteristics in the nanocomposite membranes by functionalization with an organic sulfonic acid to PPSQ. Moreover, sPPSQ content plays an important role in membrane properties such as microstructure, proton conductivity, fuel crossover, and single cell performance test. With increasing sPPSQ content in the nanocomposite membrane, the proton conductivity increased and fuel crossover decreased. However, in a higher temperature range above 110 °C, Nafion/sPPSQ 5 wt.% composite membrane has the highest proton conductivity. Also, the DME permeability for the composite membrane with higher sPPSQ content increased sharply. The excessive sPPSQ content caused a large aggregation of inorganic fillers, leading to the deterioration of membrane properties. In this study, the optimal sPPSQ content for maximizing the DDMEFC performance was 5 wt.%. Our nanocomposite membranes demonstrated proton conductivities as high as 1.57 × 10−1 S/cm at 120 °C, which is higher than that of Nafion. The cell performances were compared to Nafion/sPPSQ composite membrane with Nafion 115, and the composite membrane with sPPSQ yielded better cell performance than Nafion 115 at temperatures ranging from 100 to 120 °C and at pressures from 1 to 2 bar.  相似文献   

9.
In order to decrease the swelling of Nafion® and reduce the dependency of proton conductivity on high relative humidity (RH), mesoporous hollow silica spheres were synthesized and dispersed in Nafion matrix as micro-water-tanks in the proton exchange membranes (PEM). The morphologies of MHSi and Nafion/MHSi composite membranes are characterized by SEM and TEM. The effects of MHSi on water uptake, swelling, dehydration rate and proton conductivity of the composite membranes were investigated. The results show that, with a suitable portion of MHSi in the membrane, composite PEMs with enhanced water uptake, reduced swelling and improved proton conductivity are obtained.  相似文献   

10.
Directly copolymerized wholly aromatic sulfonated poly(arylene ether sulfone) copolymers derived from 4,4′‐biphenol, 4,4′‐dichlorodiphenyl sulfone, 3,3′‐disulfonated, and 4,4′‐dichlorodiphenyl sulfone (BPSH) were evaluated as proton‐exchange membranes for elevated temperature operation (100–140 °C). Acidification of the copolymer from the sulfonated form after the nucleophilic step (condensation) copolymerization involved either immersing the solvent‐cast membrane in sulfuric acid at 30 °C for 24 h and washing with water at 30 °C for 24 h (method 1) or immersion in sulfuric acid at 100 °C for 2 h followed by similar water treatment at 100 °C for 2 h (method 2). The fully hydrated BPSH membranes treated by method 2 exhibited higher proton conductivity, greater water absorption, and less temperature dependence on proton conductivity as compared with the membranes acidified at 30 °C. In contrast, the conductivity and water absorption of a control perfluorosulfonic acid copolymer (Nafion 1135) were invariant with treatment temperature; however, the conductivity of the Nafion membranes at elevated temperature was strongly dependent on heating rate or temperature. Tapping‐mode atomic force microscope results demonstrated that all of the membranes exposed to high‐temperature conditions underwent an irreversible change of the ionic domain microstructure, the extent of which depended on the concentration of sulfonic acid sites in the BPSH system. The effect of aging membranes based on BPSH and Nafion at elevated temperature on proton conductivity is also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2816–2828, 2003  相似文献   

11.
A novel method is reported for controlling the structure of poly(vinylidene fluoride) (PVdF) composite proton conducting membranes. When proton conducting Nafion or zirconium phosphate sulfophenylenphosphonate (ZrPSPP) particles are dispersed in a mixed colloidal suspension with PVdF particles, the proton conducting particles selectively respond to an applied electric field. Under appropriate conditions, the proton conducting particles are induced to assemble into chains that rapidly grow to span the gap between electrodes as the electric field is applied. By removing the solvent and melting the PVdF phase while applying the electric field, composite membranes were formed that have field-induced structure. In comparison to randomly structured composites, the electric field-processed Nafion/PVdF or ZrPSPP/PVdF composite membranes showed improved proton conductivity, water sorption, selectivity for protons over methanol, and controlled surface area changes upon swelling with water. The transport and mechanical properties of the electric field-processed composite membranes suggest the potential for improved performance in direct methanol fuel cells.  相似文献   

12.
The paper describes the synthesis and characterization of sulfonated polyimides based on 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA), 4,4′-diaminodiphenylether-2,2′-disulfonic acid (ODADS) and (bis[4-(4-aminophenoxy)phenylhexafluoropropane] (BDAF)). Several copolymer samples were prepared by varying the molar ratio of ODADS: BDAF (0.5:1.50, 0.75:1.25, 1:1 and 1.50: 0.5) in the initial monomer feed. Structural characterization of the copolymers was done using FT-IR and 1H NMR. 1H NMR was also used to calculate the copolymer composition. Thermal characterization was done using thermogravimertry and dynamic mechanical analysis. Polymer films were prepared by solution casting using m-cresol as solvent. The membranes thus prepared were characterized for water uptake, water stability, methanol permeability and proton conductivity. The obtained sulfonated polyimides (SPI’s) had proton conductivities in the range of 0.137-3.94 mS/cm. SPI’s with 50% degree of sulfonation had proton conductivity comparable to that of Nafion with methanol permeability lower than that of Nafion. It was found that the degree of sulfonation of polyimide had a large effect on the thermal stability, water uptake, ion-exchange capacity and proton conductivity.  相似文献   

13.
Silicon dioxide (SiO2) nanoparticles were incorporated into Nafion 115 membranes using the sol–gel method in order to investigate their effect on water retention/transport, proton concentration, effective proton mobility, and proton conductivity. By adjusting the sol–gel reaction time, Nafion/SiO2 membranes were fabricated with SiO2 content ranging from 5.9 to 33.3 wt%. Because the density of the membranes decreased with increasing SiO2 content and because dimensional changes with swelling in water of the composite membranes were less than that of unmodified Nafion 115 despite having increased water content, the theory that rigid scaffolding is formed inside the membrane is supported. Water content increases with increasing SiO2 content due to void space formed inside the membrane. This increase in water content dilutes the protons in the membrane leading to lower proton concentration and therefore lower proton conductivity. A decreasing effective proton mobility with increasing SiO2 content, likely due to an increase in the tortuosity of the proton-conducting pathway, also contributes to the decreasing conductivity. However, as evidenced by the similar water vapour permeance values, the SiO2 nanoparticles do not increase the effective tortuosity of the water vapour transmission pathways.  相似文献   

14.
高温质子交换膜燃料电池所面临的一个主要技术障碍是高温低湿度环境下能够具有满足电池工作条件的膜的制备.本文通过所合成的2-取代咪唑衍生物与全氟磺酸树脂的掺杂,采用溶液重铸法制备了可以在高温无水条件下工作的质子交换膜.通过2-位疏水基团的接枝,实现了非水质子传导介质的咪唑环在膜内的固定,所制备的复合质子交换膜的导质子率在160℃无水条件下达到6.8×10^-3Scm^-1;而且相比全氟磺酸均质膜,其热稳定性也有所提高.采用静电力显微镜观察到了所制备的复合质子交换膜内相互连接的离子团簇的形成;结合其质子传导活化能,提出了所制备的复合质子交换膜在120℃以下质子传导以跳跃方式为主;在120℃以上,则以咪唑环的"钟摆"形式实现质子在膜内的传输.  相似文献   

15.
利用溶液浇铸法制备了一系列双磺化型磺化聚芳醚砜/磺化聚酰亚胺(SPAES/SPI)复合质子交换膜.扫描电子显微镜(SEM)结果显示复合膜不存在明显的相分离,表明二者具有很好的相容性.由于SPI的引入,复合膜在甲醇中稳定性较纯SPAES具有大幅的提高,比Nafion112低得多的甲醇吸收率表明了这些复合膜具有比后者更低的甲醇透过率.复合膜显示了与单组分膜相类似的高温分解稳定性,磺酸基团的分解温度达到了290℃以上.复合膜显示出远高于纯SPAES膜的尺寸稳定性能,在130℃高温中200h处理后,所有的复合膜均保持了高的机械性能,而此时纯SPAES膜已经溶解于水中.而且由于两种磺化聚合物间的复合,复合膜维持了较高的IEC水平,显示了较高的质子导电率,在80%相对湿度时的质子导电率与Nafion112相近,而在水中的质子导电率均高于Nafion112.  相似文献   

16.
Nafion- and sulfonated polysulfone (SPS)- based composite membranes were prepared by incorporation of SnO2 nanoparticles in a wide range of loading (0 35 wt. %). The composites were investigated by differential scanning calorimetry, dynamic vapor sorption and electrochemical impedance spectroscopy to study the filler effect on water sorption, water mobility, and proton conductivity. A detrimental effect of the filler was observed on water mobility and proton conductivity of Nafion-based membranes. An increase in water mobility and proton conductivity was instead observed in SPS-based samples, particularly at low hydration degree. Analysis of the water sorption isotherms and states of water revealed that the presence of SnO2 in SPS enhances interconnectivity of hydrophilic domains, while not affecting the Nafion microstructure. These results enable the design of suitable electrolyte materials that operate in proton exchange membrane fuel cell conditions.  相似文献   

17.
Nafion-titanate nanotubes composite membranes were prepared through a casting process. With the addition of 5 wt.%, the nanotubes were homogenously distributed in Nafion solution. The formed composite membrane showed a comparable mechanical strength to Nafion membrane. The proton conductivity of the composite membrane without external humidification is higher than that of the Nafion membrane, reaching 0.034 Scm?1 and 0.01 Scm?1 at 100 °C and 120 °C, respectively. The improved proton conductivity was attributed to the great water retention ability of the doped nanotubes.  相似文献   

18.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

19.
Platinum (Pt) nanoparticles were synthesized inside a Nafion polyelectrolyte membrane for use as a catalyst membrane integrated layer in fuel cells. The integrated membrane was prepared by making use of the cation exchange between the tetraammineplatinum (II) cations ([Pt(NH3)4]2+) and sulfonic groups in the Nafion molecules, followed by film casting and chemical reduction. The synthesized Pt nanoparticles, which had a cubic shape with diameters of 11.5–14.5 nm, dispersed in the recast Nafion film, increased its proton conductivity and open circuit voltage compared with the pristine Nafion membrane. The Pt-incorporated membrane provided a 29% increment of the maximum power density, seemingly by oxidizing the crossover methanol passing through the proton-exchange membrane. At a high loading of Pt (over 3 wt.% in this study), the Nafion clusters were likely squeezed by the synthesized Pt nanoparticles so as to decrease the water uptake and proton conductivity. This hypothesis was also supported by the increased Ohmic resistance in the IV polarization curve.  相似文献   

20.
A synthetic method is described to produce a proton conductive polymer membrane with a polynorbornane backbone and inorganic–organic cyclic phosphazene pendent groups that bear sulfonic acid units. This hybrid polymer combines the inherent hydrophobicity and flexibility of the organic polymer with the tuning advantages of the cyclic phosphazene to produce a membrane with high proton conductivity and low methanol crossover at room temperature. The ion exchange capacity (IEC), the water swelling behavior of the polymer, and the effect of gamma radiation crosslinking were studied, together with the proton conductivity and methanol permeability of these materials. A typical membrane had an IEC of 0.329 mmol g−1 and had water swelling of 50 wt%. The maximum proton conductivity of 1.13 × 10−4 S cm−1 at room temperature is less than values reported for some commercially available materials such as Nafion. However the average methanol permeability was around 10−9 cm s−1, which is one hundred times smaller than the value for Nafion. Thus, the new polymers are candidates for low-temperature direct methanol fuel cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号