首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

2.
3.
We provide a novel insight into dynamic conversion of the human telomeric G-quadruplexes and particularly a step-to-step transformation pathway of the long sequence containing two quadruplex units in K(+) solution in a molecular crowding environment, implying a possible behavior of the human telomeric DNA under physiological conditions.  相似文献   

4.
The effect of molecular crowding on the structure and stability of biomolecules has become a subject of increasing interest because it can clarify how biomolecules behave under cell-mimicking conditions. Here, we quantitatively analyzed the effects of molecular crowding on the thermodynamics of antiparallel G-quadruplex formation via Hoogsteen base pairs and of antiparallel hairpin-looped duplex (HP duplex) formation via Watson-Crick base pairs. The free energy change at 25 degrees C for G-quadruplex formation decreased from -3.5 to -5.5 kcal mol(-1) when the concentration of poly(ethylene glycol) 200 was increased from 0 to 40 wt %, whereas that of duplex formation increased from -9.8 to -6.9 kcal mol(-1). These results showed that the antiparallel G-quadruplex is stabilized under molecular crowding conditions, but that the HP duplex is destabilized. Moreover, plots of stability (ln K(obs)) of the DNA structures versus water activity (ln a(w)) demonstrated that the ln K(obs) for G-quadruplex formation decreased linearly as the ln a(w) increased, whereas that for duplex formation increased linearly with the increase in ln a(w), suggesting that the slope approximately equals the number of water molecules released or taken up during the formation of these structures. Thus, molecular crowding affects the thermodynamics of DNA structure formation by altering the hydration of the DNA. The stabilization of the DNA structures with Hoogsteen base pairs and destabilization of DNA structures with Watson-Crick base pairs under molecular crowding conditions lead to structural polymorphism of DNA sequences regulated by the state of hydration.  相似文献   

5.
We present the intramolecular G-quadruplex structure of human telomeric DNA in physiologically relevant K(+) solution. This G-quadruplex, whose (3 + 1) topology differs from folds reported previously in Na(+) solution and in a K(+)-containing crystal, involves the following: one anti.syn.syn.syn and two syn.anti.anti.anti G-tetrads; one double-chain reversal and two edgewise loops; three G-tracts oriented in one direction and the fourth in the opposite direction. The topological characteristics of this (3 + 1) G-quadruplex scaffold should provide a unique platform for structure-based anticancer drug design targeted to human telomeric DNA.  相似文献   

6.
Human telomeric G-quadruplexes have raised broad interest not just due to their involvement in the regulation of gene expressions and telomerase activities but also because of their application in nanoarchitectures. Herein, three azobenzene derivatives 1-3 were synthesized with different substituent groups and their photo-isomerization properties were investigated by UV/Vis spectroscopy. Then circular dichroism spectroscopy (CD), fluorescence experiments and native-gel electrophoresis were performed to evaluate their capabilities of conformational photo-regulation both in the absence and presence of metal ions. The results suggested that the compounds synthesized can successfully regulate the conformation of human telomeric G-quadruplex DNA in K(+) conditions to some extent. This work will initiate the possibility for the design and intriguing application of light-induced switching to photoregulate the conformation of G-quadruplex DNA under physiological conditions, providing a possible pathway to control G-quadruplex conformation in biological applications and also expanding the potential use of G-quadruplexes in nanomachines.  相似文献   

7.
8.
A human telomeric G-quadruplex (G4DNA) metalloenzyme, assembled with G4DNA and Cu(2+) ions, can catalyze the enantioselective Friedel-Crafts (F-C) reaction in water with good enantioselectivity (up to 75% ee). Furthermore, we found that the absolute configuration and the enantioselectivity of the product largely depend on the conformation and the sequence of G4DNA.  相似文献   

9.
G-quadruplex structures formed by DNA at the human telomeres are attractive anticancer targets. Human telomeric sequences can adopt a diverse range of intramolecular G-quadruplex conformations: a parallel-stranded conformation was observed in the crystalline state, while at least four other forms were seen in K(+) solution, raising the question of which conformation is favored in crowded cellular environment. Here, we report the first NMR structure of a human telomeric G-quadruplex in crowded solution. We show that four different G-quadruplex conformations are converted to a propeller-type parallel-stranded G-quadruplex in K(+)-containing crowded solution due to water depletion. This study also reveals the formation of a new higher-order G-quadruplex structure under molecular crowding conditions. Our molecular dynamics simulations of solvent distribution provide insights at molecular level on the formation of parallel-stranded G-quadruplex in environment depleted of water. These results regarding human telomeric DNA can be extended to oncogenic promoters and other genomic G-rich sequences.  相似文献   

10.
A water soluble Zn(II) porphyrazine drives the conformational equilibrium of the G-quadruplex of a human telomeric sequence exclusively towards a parallel conformation upon complexation.  相似文献   

11.
The structure of the intermolecular DNA quadruplex d(TTAGGGT)4, based on the human telomeric DNA sequence d(TTAGGG), has been determined in solution by NMR and restrained molecular dynamics simultations. The core GGG region forms a highly stable quadruplex with G-tetrads likely stabilised by K+ ions bound between tetrad plains. However, we have focused on the conformation of the adenines which differ considerably in base alignment, stability and dynamics from those in previously reported structures of d(AGGGT)4 and d(TAGGGT)4. We show unambiguously that the adenines of d(TTAGGGT)4 are involved in the formation of a relatively stable A-tetrad with well-defined glycosidic torsion angles (anti), hydrogen bonding network (adenine 6-NH2-adenine N1) defined by interbase NOEs, and base stacking interactions with the neighbouring G-tetrad. All of these structural features are apparent from NOE data involving both exchangeable and non-exchangeable protons. Thus, context-dependent effects appear to play some role in dictating preferred conformation, stability and dynamics. The structure of d(TTAGGGT)4 provides us with a model system for exploiting in the design of novel telomerase inhibitors that bind to and stabilise G-quadruplex structures.  相似文献   

12.
13.
A highly efficient and versatile method for construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation of alkyl and aryl thiols with aryl iodides under mild conditions is developed. The method exhibits a broad substrate scope for thiols, aryl iodides and amino acid units. Peptide macrocycles of a wide range of size and composition can be readily assembled in high yield from various easily accessible building blocks. This method has been successfully employed to prepare an 8-million-membered tetrameric cyclic peptide DNA-encoded library (DEL). Preliminary screening of the DEL library against protein p300 identified compounds with single digit micromolar inhibition activity.

A highly efficient and versatile method for construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation of alkyl and aryl thiols with aryl iodides under mild conditions is developed.  相似文献   

14.
We report the synthesis and conformational studies of TTF-containing molecular tweezers based on a 1,2,4,5-tetramethylbenzene scaffold. In the neutral form the tweezers are expected to adopt the closed conformation, while, upon oxidation, the open conformation should be preferred due to electrostatic repulsion between the oxidized TTF moieties. Cyclic voltammetry studies demonstrate electronic pairing with formation of mixed-valence [TTF]2+ species and opening of the tweezers upon the full oxidation of the TTF groups. Variable-temperature (VT) NMR studies evidence tight intramolecular TTF pairing at low temperature. Molecular modeling studies showed clear preference for an open conformation of tweezers in a fully oxidized state.  相似文献   

15.
利用分子动力学模拟方法, 考察了人体端粒中(3+1)混合结构G-四链体的结构及稳定性问题. 讨论了配位K+离子、药物分子(端粒抑素)和溶剂水分子对G-四链体的Hoogsteen氢键结构、π-π堆积作用的影响. 研究表明, K+离子与鸟嘌呤碱基上O6原子的配位作用减弱了对角鸟嘌呤间O6-O6的静电排斥作用, 使得相邻的四个鸟嘌呤能够以Hoogsteen氢键结合的方式形成具有近平面结构的稳定G-四平面. 另一方面, G-四平面间、G-四平面与药物分子间的π-π堆积作用降低了G-四链体复合物的总能, 有利于其稳定存在. 此外, 溶剂水分子主要分布在G-四链体的TTA环、骨架和糖环的周围, 使其位移涨落增大; 然而, 在3 ns动力学模拟中, 由于水分子没有进入到G-四链体的空腔中, 溶剂水对G-四平面的结构影响不明显.  相似文献   

16.
A robust ultramicroelectrode (UME) probe is described for the amperometric determination of K+ ions in aqueous solution. The approach is based on ion-transfer voltammetry at the interface between two immiscible electrolyte solutions (ITIES), with a liquid ¦ liquid interface formed between a 1,2-dichloroethane solution, containing dibenzo-18-crown-6, in a glass capillary, which is placed in an aqueous K+ salt solution of interest (KCl in this study). The ITIES is externally polarised by applying a potential between silver electrodes in each phase. The UME probe has an inlaid disk geometry, making conventional ultramicroelectrode and scanning electrochemical microscopy (SECM) mass transport models applicable. Limiting current measurements of K+ in aqueous solution show a linear dependence on KCl concentration between 1 × 104 and 2.5 × 103 mol dm3. The K+ microprobe is shown to be particularly suitable for use in SECM, for both approach curve and imaging applications.  相似文献   

17.
We performed an ab initio molecular dynamics simulation of the paramagnetic transition metal ion Cr3+ in aqueous solution. Isotropic hyperfine coupling constants between the electron spin of the chromium ion and nuclear spins of all water molecules have been determined for instantaneous snapshots extracted from the trajectory. The coupling constant of first sphere oxygen, A iso(17OI)=1.9±0.3 MHz, is independent on Cr–OI distance but increases with the tilt angle for the water molecule approaching 180°. First sphere hydrogen spins have A iso(1 HI)=2.1±0.2 MHz which decreases with increasing tilt angle and shows a Cr–HI distance dependence. The hyperfine coupling constants for second sphere 17O is negative and an order of magnitude smaller (−0.20±0.02 MHz) compared to first sphere.  相似文献   

18.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

19.
We demonstrate by NMR that the two-repeat human telomeric sequence d(TAGGGTTAGGGT) can form both parallel and antiparallel G-quadruplex structures in K(+)-containing solution. Both structures are dimeric G-quadruplexes involving three stacked G-tetrads. The sequence d(TAGGGUTAGGGT), containing a single thymine-to-uracil substitution at position 6, formed a predominantly parallel dimeric G-quadruplex with double-chain-reversal loops; the structure was symmetric, and all guanines were anti. Another modified sequence, d(UAGGGT(Br)UAGGGT), formed a predominantly antiparallel dimeric G-quadruplex with edgewise loops; the structure was asymmetric with six syn guanines and six anti guanines. The two structures can coexist and interconvert in solution. For the latter sequence, the antiparallel form is more favorable at low temperatures (<50 degrees C), while the parallel form is more favorable at higher temperatures; at temperatures lower than 40 degrees C, the antiparallel G-quadruplex folds faster but unfolds slower than the parallel G-quadruplex.  相似文献   

20.
This paper presents recent advances in the use of molecular simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy, which enable us to understand solvated ions in solution. We report and discuss the EXAFS spectra and related properties governing solvation processes of different ions in water and methanol. Molecular dynamics (MD) trajectories are coupled to electron scattering simulations to generate the MD-EXAFS spectra, which are found to be in very good agreement with the corresponding experimental measurements. From these simulated spectra, the ion-oxygen distances for the first hydration shell are in agreement with experiment within 0.05-0.1 A. The ionic species studied range from monovalent to divalent, positive and negative: K+, Ca2+, and Cl-. This work demonstrates that the combination of MD-EXAFS and the corresponding experimental measurement provides a powerful tool in the analysis of the solvation structure of aqueous ionic solutions. We also investigate the value of electronic structure analysis of small aqueous clusters as a benchmark to the empirical potentials. In a novel computational approach, we determine the Debye-Waller factors for Ca2+, K+, and Cl- in water by combining the harmonic analysis of data obtained from electronic structure calculations on finite ion-water clusters, providing excellent agreement with the experimental values, and discuss how they compare with results from a harmonic classical statistical mechanical analysis of an empirical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号