首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present article researches the problems of the lateral instability of cantilever rectangular plates under a concentrated force or a uniformly distributed load respectively.We select the polynomial(2.1)instead of the cosecant function in Ref.[1]as the flexural functions.The minimum critical load obtained here is more exact than the results obtained in Ref.[1]  相似文献   

2.
In this paper,applying the method of the reciprocal theorem,we give the stationarysolutions of the forced vibration of cantilever rectangular plates under uniformly distributedharmonic load and concentrated harmonic load acting at any point of the plates,the figuresand tables of number value of bending moment and the deflection amplitudes as well.  相似文献   

3.
In this paper, applying the method of the reciprocal theorem, we give the stationary solutions of the forced vibration of cantilever rectangular plates under uniformly distributed harmonic load and concentrated harmonic load acting at any point of the plates, the figures and tables of number value of bending moment and the deflection amplitudes as well.  相似文献   

4.
The present paper investigates several problems for unsymmetrically lateral instability of rectangular plates by the energy method. In the text we discuss the minimum critical load of rectangular plates which possess the unsymmetrical supporters and to which the lateral buckling occurs unsymmetrically under a concentrated force, uniformly distributed load and the concentrated couples respectively.  相似文献   

5.
This paper investigates the problems of lateral buckling of rectangular plates. In the text we discuss the minimum critical load of the lateral buckling occurring on under a concentrated force, uniformly distributed load and the concentrated couples, respectively. The energy method is used in this article.  相似文献   

6.
This paper derives the cubic spline beam function from the generalized beam differential equation and obtains the solution of the discontinuous polynomial under concentrated loads, concentrated moment and uniform distributed by using delta function. By means of Kantorovich method of the partial differential equation of elastic plates which is transformed by the generalized function (δ function and σ function), whether concentrated load, concentrated moment, uniform distributed load or small-square load can be shown as the discontinuous polynomial deformed curve in the x-direction and the y-direction. We change the partial differential equation into the ordinary equation by using Kantorovich method and then obtain a good approximate solution by using Glerkin’s method. In this paper there ’are more calculation examples involving elastic plates with various boundary-conditions, various loads and various section plates, and the classical differential problems such as cantilever plates are shown.  相似文献   

7.
The stability of cantilever rectangular plates under the symmetrical edge loading will be studied in this paper by lite varialional calculus. We are going to find out the minimum critical loading for cantilever rectangular plates subjected to various edge loadings symmetrically on a pair of opposite free edges. We’ll discuss the least critical loadings when the buckling of rectangular plates acted on bv a pair of concentrated forces, uniformly distributed loads, locally uniform distributed loads, distributed loads in the form of triangle and a pair of concentrated couples occur respectively.  相似文献   

8.
The cantilever rectangular plates discussed previously are all loaded continuously. For example, the load may be either a uniform or a concentrated load at the free ledge of the plate. Now we go a step further to deal with the case of a discontinuously loaded rectangular cantilever plate. The problem to be solved will involve a concentrated load at the center of the plate, as shown in Fig. 1. The method of solution used is the same as before.  相似文献   

9.
研究了圆柱、圆锥、抛物型和双曲型回转变截面悬臂梁在侧向三角形分布载荷下的挠度。基于四类回转悬臂梁的惯性矩沿长度方向的分布规律,得到其任意侧向分布载荷下的挠曲线方程。基于三角形分布载荷下的挠曲线方程,得到其端部挠度值。在等长度和等体积假设下,通过比较端部挠度值找到四类悬臂梁中挠度最小者。研究表明三角形分布载荷下,特征参数在特定范围内,母线为双曲线的悬臂梁挠度最小。  相似文献   

10.
The bending of a cantilever rectangular plate is a very complicated problem in thetheory of plates.For a long time,there have been only approximate solutions for thisproblem by energy methods and numerical methods.since 1979,Prof.F.V.Chang of Tsing Hua University obtained,by the method ofsuperposition,a series of analytic solutions for cantilever rectangular plates under uniformload and concentrated load.In this paper,the two-direction trigonometric series is used to obtain the solution forthe bending of cantilever rectangular plates under uniform load.The obtained results arecompared with the results by the method of superposition.The comparison shows that theresults of these two methods are in good agreement,hence they are mutually confirmed to becorrect.  相似文献   

11.
This paper discusses the problems of the unsymmetrical bending of cantilever rectangular plates under various loads by the energy method. We illustrate numerous calculating examples such as the plates which are subjected by the concentrated forces or concentrated couples unsymmetrically on free sides and corner points and by a uniformly or nonuniformly distributed loads unsymmetrically on free edges and so forth.  相似文献   

12.
This work studies large deflections of slender,non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed continuous load and a concentrated load at the free end of the beam.The material of the cantilever is assumed to be nonlinearly elastic.Different nonlinear relations between stress and strain in tensile and compressive domain are considered.The accuracy of numerical solutions is evaluated by comparing them with results from previous studies and with a laboratory experiment.  相似文献   

13.
In this paper the solutions for the bending of cantilever rectangular plates with concentrated load acting at any point of the middle line perpendicular to the clamped edge are given by means of a conception named modified simply supported edges and the method of superposition. Some numerical examples are presented. The total bending moment checks very well with the value determined statically.  相似文献   

14.
基于能量变分原理,拟定轴向荷载作用下箱梁的纵向位移函数,得到关于翼板剪切变形引起的位移差函数的基本微分方程,继而推导出箱梁翼板纵向应力表达式,并首次得出角隅轴向荷载作用下翼板出现应力不均匀分布的荷载及边界条件。通过对一模型箱梁进行计算,并与通用有限元软件ANSYS壳单元计算结果进行比较,验证了该方法和所推导公式的正确性。研究结果表明,当作用于简支箱梁截面角隅处的轴向荷载(合力无偏心)为集中或分布荷载时,翼板不产生纵向应力不均匀现象;当作用于悬臂箱梁截面角隅处的轴向荷载(合力无偏心)为集中荷载时,翼板不产生纵向应力不均匀现象,而当荷载轴向分布时,翼板将产生纵向应力不均匀现象。实际工程中,横力弯曲使悬臂箱梁产生剪力滞效应,这种效应会与轴向分布荷载产生的效应叠加,设计时对此应予以充分考虑。  相似文献   

15.
针对单箱双室箱梁,考虑各翼板间剪力滞翘曲的差异,并结合全截面轴力自平衡条件,定义了箱梁各翼板的剪滞翘曲位移函数. 利用最小势能原理,建立了双室箱梁考虑剪力滞效应的控制微分方程. 对一典型的单箱双室简支箱梁,利用空间板壳数值方法和本文解析解方法,研究了满跨均布载荷和跨中集中力作用下截面的剪力滞分布规律. 结果表明,本文提出的剪力滞翘曲位移模式能够反映双室箱梁各翼板间剪力滞翘曲的差异,本文解析解与有限元数值解吻合良好. 双室箱梁中腹板部位顶、底板处的剪力滞效应与边腹板部位有一定差异,对算例结构,中腹板部位的顶、底板应力小于边腹板部位的应力.  相似文献   

16.
A uniform elastic cantilever is subjected to a uniformly distributed load or a concentrated load at its tip. The angle of the fixed end with the horizontal is varied until the maximum horizontal distance (projection) from the fixed end to the horizontal location of the tip is attained. The beam is modeled as an inextensible elastica, and numerical results are obtained with the use of a shooting method. For the optimal solution (furthest reach), the tip is below the level of the fixed end. Experiments are conducted to verify the analysis for a heavy cantilever (i.e., only subjected to its self-weight).  相似文献   

17.
对箱梁各翼板(顶板、悬臂板、底板)分设不同剪力滞广义纵向位移,其横向分布均取二次抛物线形式,并引入载荷横向位置参数η,以分析载荷横向变位对剪力滞效应的影响.运用能量变分原理,建立剪力滞控制微分方程,求解了简支梁和悬臂梁在均布载荷作用下的控制微分方程的解.算例分析表明:载荷横向变位改变直接承受载荷的翼板的正负剪力滞特性,对非直接承载翼板只改变其应力幅度;箱梁横向框架效应对直接承载翼板纵向应力的贡献远远大于剪切变形.与块体有限元分析结果较吻合,表明该算法能较准确分析载荷横向变位作用下箱梁剪力滞的变化规律.  相似文献   

18.
Applying Lagrange–Germain’s theory of elastic thin plates and Hamiltonian formulation, the dynamics of cantilever plates and the problem of its vibration control are studied, and a general solution is finally given. Based on Hamiltonian and Lagrangian density function, we can obtain the flexural wave equation of the plate and the relationship between the transverse and the longitudinal eigenvalues.Based on eigenfunction expansion, dispersion equations of propagation mode of cantilever plates are deduced. By satisfying the boundary conditions of cantilever plates, the natural frequencies of the cantilever plate structure can be given.Then, analytic solution of the problem in plate structure is obtained. An hybrid wave/mode control approach, which is based on both independent modal space control and wave control methods, is described and adopted to analyze the active vibration control of cantilever plates. The low-order(controlled by modal control) and the high-order(controlled by wave control) frequency response of plates are both improved. The control spillover is avoided and the robustness of the system is also improved. Finally, simulation results are analyzed and discussed.  相似文献   

19.
A non-linear analysis of unbraced, rigid-jointed, and elastically restrained (against rotation) portal frames of variable geometry is presented. The loading system consists of eccentric concentrated loads and a transverse uniformly distributed load. Among the important conclusions one may list the following: (a) symmetric portal frames, loaded symmetrically, buckle through a stable bifurcation (sway-buckling) from a symmetric bent equilibrium configuration, and (b) nonsymmetric portal frames do not buckle; their behavior is similar to that of imperfect cantilever columns.  相似文献   

20.
The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates, and the transverse deformation of the plate on which a concentrated force is acted is calculated using the principle of virtual work.By solving Lagrange's equation, the frequencies and model loss factors of free vibration of the plate are obtained, then the transient response of constrained damping of laminated cantilever plate is obtained, when the concentrated force is withdrawn suddenly.The theoretical calculations are compared with the experimental data, the results show:both the frequencies and the response time of theoretical calculation and its variational law with the parameters of the damping layer are identical with experimental results.Also, the response time of steel cantilever plate, unconstrained damping cantilever plate and constrained damping cantilever plate are brought into comparison, which shows that the constrained damping structure can effectively suppress the vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号