首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kondo lattice model, augmented by a Zeeman term, serves as a useful model of a Kondo insulator in an applied magnetic field. A variational mean field analysis of this system on a square lattice, backed up by quantum Monte Carlo calculations, reveals an interesting separation of magnetic field scales. For Zeeman energy comparable to the Kondo energy, the spin gap closes and the system develops transverse staggered magnetic order. The charge gap, however, remains robust up to a higher hybridization energy scale, at which point the canted antiferromagnetism is exponentially suppressed and the system crosses over to a nearly metallic regime. Quantum Monte Carlo simulations support this mean field scenario. An interesting rearrangement of spectral weight with magnetic field is found.  相似文献   

2.
We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.  相似文献   

3.
We investigate the competition of the Kondo and the RKKY interactions in heavy fermion systems. We solve a periodic Anderson model using extended dynamical mean field theory (EDMFT) with quantum Monte Carlo method. We monitor simultaneously the evolution of the electronic and magnetic properties. As the RKKY coupling increases the heavy fermion quasiparticle unbinds and a local moment forms. At a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the two transitions occur at different points and the disappearance of the magnetism is not described by a local quantum critical point.  相似文献   

4.
The effects of both interactions and Zeeman magnetic field in disordered electronic systems are explored in the Hubbard model on a square lattice. We investigate the thermodynamic (density, magnetization, density of states) and transport (conductivity) properties using determinantal quantum Monte Carlo and inhomogeneous Hartree Fock techniques. We find that at half filling there is a novel metallic phase at intermediate disorder that is sandwiched between a Mott insulator and an Anderson insulator. The metallic phase is highly inhomogeneous and coexists with antiferromagnetic long-range order. At quarter filling also the combined effects of disorder and interactions produce a conducting state which can be destroyed by applying a Zeeman field, resulting in a magnetic field-driven transition. We discuss the implication of our results for experiments.  相似文献   

5.
Motivated by recent Hall-effect experiment in YbRh(2)Si(2), we study ground state properties of a Kondo lattice model in a two-dimensional square lattice using variational Monte Carlo method. We show that there are two types of phase transition, an antiferromagnetic transition and a topological one (Fermi-surface reconstruction). In a wide region of parameters, these two transitions occur simultaneously without the breakdown of Kondo screening, accompanied by a discontinuous change of the Hall coefficient. This result is consistent with the experiment and gives a novel theoretical picture for the quantum critical point in heavy-fermion systems.  相似文献   

6.
7.
We use the dynamical cluster approximation, with a quantum Monte Carlo cluster solver on clusters of up to 16 orbitals, to investigate the evolution of the Fermi surface across the magnetic order-disorder transition in the two-dimensional doped Kondo lattice model. In the paramagnetic phase, we observe the generic hybridized heavy-fermion band structure with large Luttinger volume. In the antiferromagnetic phase, the heavy-fermion band drops below the Fermi surface giving way to hole pockets centered around k=(pi/2,pi/2) and equivalent points. In this phase Kondo screening does not break down, but the topology of the resulting Fermi surface is that of a spin-density wave approximation in which the localized spins are frozen.  相似文献   

8.
We show that the optical response of metals with strong electron-electron correlation consists of two excitations, a renormalized Drude response at zero energy and a mid-infrared peak occurring at frequencies around 2000 cm-1. The latter originates from a dynamical, correlation-induced gap, as evinced from a many body theoretical approach based on the periodic Anderson model. At very low temperatures, it can be viewed as optical gap between two renormalized quasi-particle bands. The gap size is proportional to the geometric mean of the characteristic lattice Kondo temperature of the material and its bandwidth. Received 28 August 2000 and Received in final form 31 October 2000  相似文献   

9.
We present theoretical results for the equilibrium Josephson current through an Anderson dot tuned into the magnetic regime, using Hirsch-Fye Monte Carlo simulations covering the complete crossover from Kondo-dominated physics to pi junction behavior in a numerically exact way. Within the "magnetic" regime, U/Gamma > 1 and epsilon0/Gamma < or = 1, the Josephson current is found to depend only on Delta/TK, where Delta is the BCS gap and TK the Kondo temperature. The junction behavior can be classified into four different quantum phases. We describe these behaviors, specify the associated three transition points, and identify a local minimum in the critical current of the junction as a function of Delta/TK.  相似文献   

10.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

11.
We show within the slave-boson technique that the Anderson lattice model exhibits a Kondo breakdown quantum critical point where the hybridization goes to zero at zero temperature. At this fixed point, the f electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multiscale quantum critical point in the Anderson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.  相似文献   

12.
We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.  相似文献   

13.
We present quantum Monte Carlo results for a square-lattice S=1/2 XY model with a standard nearest-neighbor coupling J and a four-spin ring exchange term K. Increasing K/J, we find that the ground state spin stiffness vanishes at a critical point at which a spin gap opens and a striped bond-plaquette order emerges. At still higher K/J, this phase becomes unstable and the system develops a staggered magnetization. We discuss the quantum phase transitions between these phases.  相似文献   

14.
We study an integrable two-leg spin-1/2 ladder with an XYZ-type rung interaction. The exact rung states and rung energies are obtained for the anisotropic rung coupling in the presence of a magnetic field. The magnetic properties are analyzed at both zero and finite temperatures via the thermodynamic Bethe ansatz and the high-temperature expansion. According to different couplings in the anisotropic rung interaction, there are two cases in which a gap opens, where the ground state involves one or two components in the absence of a magnetic field. We obtain the analytic expressions of all critical fields for the field-induced quantum phase transitions (QPT). The anisotropic rung interaction leads to such effects as separated magnetizations and susceptibilities in different directions, lowered inflection points, and remnant weak variation of the magnetization after the last QPT.Received: 21 May 2004, Published online: 30 September 2004PACS: 75.10.Jm Quantized spin models - 75.30.Kz Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) - 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)  相似文献   

15.
We study the behavior of the quarter-filled Kondo-lattice model on a triangular lattice by combining a zero-temperature variational approach and finite-temperature Monte Carlo simulations. For intermediate coupling between itinerant electrons and classical moments S(j), we find a thermodynamic phase transition into an exotic spin ordering with uniform scalar spin chirality and (S(j))=0. The state exhibits a spontaneous quantum Hall effect. We also study how its properties are affected by the application of an external magnetic field.  相似文献   

16.
17.
Using Monte Carlo techniques and mean field method, we study a coupled Z2 gauge-scalar system on a lattice without freezing the radial mode of the scalar field. We find that the phase diagram for our model makes a decided contrast with that for the coupled gauge-spin model when the self-coupling of the scalar field is small. First-order phase transitions caused by the radial fluctuation of the scalar field are observed.  相似文献   

18.
《Nuclear Physics B》1988,295(1):21-35
The first order phase transitions in the two-dimensional 10-state Potts model and in the two-dimensional Ising model with magnetic field are studied with Monte Carlo renormalization group methods. The deconfining phase transition of the four-dimensional U(1) lattice gauge theory is treated similarly. The results are not consistent with the standard discontinuity fixed point picture of first order phase transitions. In the U(1) case, where this possibility exists, they are not consistent with a second order phase transition either. The results show a discontinuous flow on the first order transition surface, which is a Monte Carlo renormalization group signal of singular RG transformations.  相似文献   

19.
We solve the 3D periodic Anderson model using a two impurity cluster dynamical mean field theory. We obtain the temperature versus hybridization phase diagram. Approaching the quantum critical point (QCP) both the Néel and lattice Kondo temperatures decrease and they do not cross at the lowest temperature we reached. While strong ferromagnetic spin fluctuation on the Kondo side is observed, our result suggests the critical static spin susceptibility is local in space at the QCP. We observe in the crossover region a logarithmic temperature dependence in the specific heat coefficient and spin susceptibility.  相似文献   

20.
Experiments on quantum point contacts have highlighted an anomalous conductance plateau around 0.7(2e(2)/h), with features suggestive of the Kondo effect. Here, an Anderson model for transport through a point contact analyzed in the Kondo limit. Hybridization to the band increases abruptly with energy but decreases with valence, so that the background conductance and the Kondo temperature T(K) are dominated by different valence transitions. This accounts for the high residual conductance above T(K). The model explains the observed gate-voltage, temperature, magnetic field, and bias-voltage dependences. A spin-polarized current is predicted even for low magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号