首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four Ru(II) complexes with tridentate ligands viz. (4-hydroxy-N′-(pyridin-2-yl-ethylene) benzohydrazide [Ru(L1)(PPh3)2(Cl)] (1), N′-(pyridin-2-yl-methylene) nicotinohydrazide [Ru(L2)(PPh3)2(Cl)] (2), N′-(1H-imidazol-2-yl-methylene)-4-hydroxybenzohydrazide [Ru(L3)(PPh3)2(Cl)] (3), and N′-(1H-imidazol-2-yl-methylene) nicotinohydrazide [Ru(L4)(PPh3)2(Cl)] (4) have been synthesized and characterized. The methoxy-derivative of L3H (abbreviated as L3H*) exists in E configuration with torsional angle of 179.4° around C7-N8-N9-C10 linkage. Single crystal structures of acetonitrile coordinated ruthenium complexes of 1 and 3 having compositins as [Ru(L1)(PPh3)2(CH3CN)]Cl (1a) and [Ru(L3)(PPh3)2(CH3CN)]Cl (3a) revealed coordination of tridentate ligands with significantly distorted octahedral geometry constructed by imine nitrogen, heterocyclic nitrogen, and enolate amide oxygen, forming a cis-planar ring with trans-placement of two PPh3 groups and a coordinated acetonitrile. Ligands (L1H-L4H) and their ruthenium complexes (1–4) are characterized by 1H, 13C, 31P NMR, and IR spectral analysis. Ru(II) complexes have reversible to quasi-reversible redox behavior having Ru(II)/Ru(III) oxidation potentials in the range of 0.40–0.71 V. The DNA binding constants determined by absorption spectral titrations with Herring Sperm DNA (HS-DNA) reveal that L4H and 1 interact more strongly than other ligands and Ru(II) complexes. Complexes 1–3 exhibit DNA cleaving activity possibly due to strong electrostatic interactions while 4 displays intercalation.  相似文献   

2.
The reactions of equimolar amounts of trans-[ReOC13(PPh3)2] or trans-[Re(NPh)(PPh3)2Cl3] with a Schiff base formed by condensation of 2-hydroxy-4-methoxybenzaldehyde and ethanolamine (H2L) result in the formation of cis-[ReO(HL)PPh3Cl2] (1a) and trans-[Re(NPh)(HL)(PPh3)Cl2] (2b), respectively, in good yields. 1a and 2b have been characterized by a range of spectroscopic and analytical techniques. The X-ray crystal structures of 1a and 2b reveal that 1a is an octahedral cis-Cl,Cl oxorhenium(V) complex, while 2b is a trans-Cl,Cl phenylimidorhenium(V) complex. The complexes are weakly emissive at room temperature with quantum yields of 10?4. Density functional theory calculations of the electronic properties of the complexes were performed and are in agreement with the experimental results. The complexes display quasi-reversible Re(V)/Re(VI) redox couples in acetonitrile. There is reasonable agreement between the experimental and calculated redox potentials of 1a and 2b.  相似文献   

3.
Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4-tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone)methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene)ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigated  相似文献   

4.
The reaction of equimolar quantities of trans-[ReOCl3(PPh3)2] and 8-hydroxyquinoline (Hhqn) in benzene led to the isolation of the six-coordinate complex [ReOCl2(hqn)(PPh3)] (1). With 2-pyridine-ethanol (Hhep) the compound [ReOCl2(hep)(PPh3)] (2) was obtained. Both hqn and hep ligands act as monoanionic bidentate N,O-donor chelates. Although the two complexes are very similar, there are some significant differences in certain bond distances and angles in them. Both complexes contain the nearly linear trans O=Re–O axis, with this angle equal to 160.9(2)° and 167.8(1)° in 1 and 2, respectively.  相似文献   

5.
The reaction of dibenzoylmethane (HDBM) with [RuCl2(PPh3)3] in benzene in the presence of a supporting base (Et3N) under reflux gives two different complexes, the side product as a green-yellow Ru(III) compound of composition [RuIIICl2(DBM)(PPh3)2] (2) and the main product as a red Ru(II) complex of composition [RuII(DBM)2(PPh3)2] (3). The products were studied by spectroscopic methods, cyclic voltammetry and X-ray single crystal diffraction. The molecular structure of 2 shows a distorted octahedral environment around the Ru atom with two phosphine ligands in trans positions. The octahedral complex 3 shows a cis arrangement of two phosphine ligands.  相似文献   

6.
The heterogeneous phase reaction of excess sodium salt of 2-hydroxypyridine (OHpy) with [Ru(κ2C,O-RL)(PPh3)2(CO)Cl] (1) afforded complexes of the type [Ru(κ1C-RL)(PPh3)2(CO)(Opy)] (2) in excellent yield [κ2C,O-RL is 4-methyl-6-((N-R-arylimino)methyl)phenolato-C2,O), κ1C-RL is 4-methyl-6-((N-R-arylimino)methyl)phenol-C2) and R is H, Me, OMe, Cl]. The chelation of Opy is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. The 12 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite, and nitrate complexes of 1. The spectral (UV-vis, IR, NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi-reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.65–0.69 V versus Ag/AgCl. The crystal and molecular structures of [Ru(κ1C-HL)(PPh3)2(CO)(Opy)]·2C6H6·0.5H2O, 2(H)·2C6H6·0.5H2O and [Ru(κ1C-ClL)(PPh3)2(CO)(Opy)]·2C6H6·0.25H2O, 2(Cl)·2C6H6·0.25H2O are reported, which revealed a distorted octahedral RuC2P2NO coordination sphere. The pairs (P,P), (C,O), and (C,N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory.  相似文献   

7.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

8.
 The polymeric compound [Ru(cod)Cl2] x (cod = cyclooctadiene) reacts with 2 equivalents of tmeda (N,N,N′,N′-tetramethylethylenediamine) in refluxing MeOH to afford trans-[Ru(cod)(tmeda)(Cl)(H)] (1), which upon treatment with CHCl3 is readily converted to the dichloro complex trans-[Ru(cod)(tmeda)Cl2] (2). When [Ru(cod)Cl2] x is reacted with tmeda under an atmosphere of H2 (3 bar), the bis-tmeda complex trans-[Ru(tmeda)2Cl2] (3) is obtained in 80% yield. DFT calculations revealed that 3 is by 52 kJ/mol more stable than the corresponding cis isomer. Attempts to prepare the coordinatively unsaturated complex [Ru(tmeda)2Cl]+ by reacting 1 with TICF3SO3 were unsuccessful. According to DFT calculations, however, such a complex should be stable and, interestingly, should adopt a square pyramidal rather than a trigonal bipyramidal structure. If halide abstraction of 3 is performed in the presence of terminal alkynes HC*CR (R*t-Bu, n-Bu), the cationic vinylidene complexes [Ru(tmeda)2(Cl)(*C*CHR)]+ (4a,b) are obtained.  相似文献   

9.
Summary.  The polymeric compound [Ru(cod)Cl2] x (cod = cyclooctadiene) reacts with 2 equivalents of tmeda (N,N,N′,N′-tetramethylethylenediamine) in refluxing MeOH to afford trans-[Ru(cod)(tmeda)(Cl)(H)] (1), which upon treatment with CHCl3 is readily converted to the dichloro complex trans-[Ru(cod)(tmeda)Cl2] (2). When [Ru(cod)Cl2] x is reacted with tmeda under an atmosphere of H2 (3 bar), the bis-tmeda complex trans-[Ru(tmeda)2Cl2] (3) is obtained in 80% yield. DFT calculations revealed that 3 is by 52 kJ/mol more stable than the corresponding cis isomer. Attempts to prepare the coordinatively unsaturated complex [Ru(tmeda)2Cl]+ by reacting 1 with TICF3SO3 were unsuccessful. According to DFT calculations, however, such a complex should be stable and, interestingly, should adopt a square pyramidal rather than a trigonal bipyramidal structure. If halide abstraction of 3 is performed in the presence of terminal alkynes HC*CR (R*t-Bu, n-Bu), the cationic vinylidene complexes [Ru(tmeda)2(Cl)(*C*CHR)]+ (4a,b) are obtained. Received March 26, 2001. Accepted April 26, 2001  相似文献   

10.
Reactions of [Ru(PPh3)3Cl2] with 2-(benzylimino-methyl)-4-R-phenol (HRL, R = H, Cl, Br and OMe) in boiling methanol in presence of triethylamine afford ruthenium(II) complexes of general formula [Ru(RL)(PPh3)2(CO)Cl] in 57-64% yield. Microanalysis, spectroscopic (infrared, electronic and NMR) and cyclic voltammetric measurements have been used for the characterization of the complexes. Crystal structures of two representative complexes have been determined by X-ray crystallography. The carbonyl, the chloride, the N,O-donor RL and the two mutually trans PPh3 molecules assemble a distorted octahedral CClNOP2 coordination sphere around the metal centre in each complex. The complexes display the Ru(II) → Ru(III) oxidation in the potential range 0.62-1.16 V (vs. Ag/AgCl).  相似文献   

11.
Reaction of RuCl2(PPh3)3with pyrimidine-2-thione (HpymS) in a 1:2?mol ratio in dry benzene in the presence of triethylamine as base yielded a complex of stoichiometry [Ru(pymS)2(PPh3)2] (1). This has been characterized using analytical data and IR, 1H, 13C and 31P NMR spectroscopy. 1H NMR confirmed the deprotonation of HpymS. 31P NMR spectra showed a single peak confirming equivalent P atoms. Complex 1 crystallizes in space group Pī and HpymS acts as a η2-N,S-deprotonated bidentate anionic ligand. The coordination geometry around the Ru center is distorted octahedral with cis dispositions of P atoms, as well as two N atoms of pymS and trans S atoms of pymS. Important bond distances and angles are: Ru–N, 2.119(2), 2.106(2); Ru–S, 2.4256(8), 2.4413(8); and Ru–P, 2.3266(7), 2.3167(7)?Å; P(2)–Ru(1)–P(1), 96.07(3); N(21)–Ru(1)–N(11), 83.46(9); and S(1)–Ru(1)–S(2), 153.02(3)°.  相似文献   

12.
Complexes cis-[ReOX2(msa)(PPh3)]?[X?=?Cl(1), I(2)] were prepared from trans-[ReOCl3(PPh3)2] or trans-[ReOI2(OEt)(PPh3)2] with 2-(1-iminoethyl)phenol (Hmsa) in acetonitrile. An X-ray crystallographic study shows that the bonding distances and angles in 1 and 2 are nearly identical, and that the two halides in each complex are coordinated cis to each other in the equatorial plane cis to the oxo group. Rhenium(V) complexes with cis diiodides are rare. All bonding distances and angles are in the expected ranges.  相似文献   

13.
Reactions of Schiff bases (H2apahR) derived from acetophenone and acid hydrazides, triethylamine and [Ru(PPh3)3Cl2] (1:2:1 mole ratio) in methanol provide cyclometallated ruthenium(III) complexes of formula trans-[Ru(apahR)(PPh3)2Cl] in 74–81% yields. The complexes have been characterized by elemental analysis, magnetic susceptibility, spectroscopic (infrared, electronic and EPR) and electrochemical measurements. X-ray crystal structures of two representative complexes have been determined. In each complex, the metal centre is in distorted octahedral CNOClP2 coordination sphere assembled by the C,N,O-donor meridionally spanning apahR2?, the chloride and the two mutually trans-oriented PPh3 molecules. All the complexes are one-electron paramagnetic (μeff. = 1.85–1.98 μB) and display rhombic EPR spectra in frozen (120 K) dichloromethane-toluene (1:1) solution. Electronic spectra of the complexes display several absorptions within 470–270 nm due to ligand-to-metal charge transfer and ligand centred transitions. The complexes are redox active and display a Ru(III)  Ru(II) reduction and a Ru(III)  Ru(IV) oxidation in the potential ranges ?0.66 to ?0.70 V and 0.75 to 0.80 V (vs. Ag/AgCl), respectively.  相似文献   

14.
Herein we report the synthesis and characterization of trans-[RuIICl2(PPh3)3] with potentially tridentate Schiff bases derived from 5,6-diamino-1,3-dimethyl uracil (H2ddd) and two 2-substituted aromatic aldehydes. In the diamagnetic ruthenium(II) complexes, trans-[RuCl(PPh3)2(Htdp)] (1) {H2tdp = 5-((thiophen-3-yl)methyleneamino)-6-amino-1,3-dimethyluracil} and trans-[RuCl(PPh3)2(Hsdp)] (2) {H2sdp = 5-(2-(methylthio)benzylideneamino)-6-amino-1,3-dimethyluracil}, the Schiff base ligands (i.e. Htdp and Hsdp) act as mono-anionic tridentate chelators. Upon reacting 5-(2-hydroxybenzylideneamino)-6-amino-1,3-dimethyluracil (H3hdp) with the metal precursor, the paramagnetic complex, trans-[RuIVCl2(ddd)(PPh3)2] (3), was isolated, in which the bidentate dianionic ddd co-ligand was formed by hydrolysis. The metal complexes were fully characterized via multinuclear NMR-, IR-, and UV–Vis spectroscopy, single crystal XRD analysis and conductivity measurements. The redox properties were probed via cyclic voltammetry with all complexes exhibiting comparable electrochemical behavior with half-wave potentials (E½) at 0.70 V (for 1), 0.725 V (for 2), and 0.68 V (for 3) versus Ag|AgCl, respectively. The presence of the paramagnetic metal center for 3 was confirmed by ESR spectroscopy.  相似文献   

15.
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple.  相似文献   

16.
[Ru(CO)(PPh3)23-O,N3,S-TSC1)] (1), [Ru(Cl)(CO)(PPh3)22-N3,S-TSC2)] (2), and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC3)] (3) have been prepared by reacting [Ru(H)(Cl)(CO)(PPh3)3] with the respective thiosemicarbazones TSC1 (2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone), TSC2 (3-hydroxybenzaldehyde thiosemicarbazone), and TSC3 (3,4-dihydroxybenzaldehyde thiosemicarbazone) in a 1?:?1 M ratio in toluene and all of the complexes have been characterized by UV–vis, FT-IR, and 1H and 31P NMR spectroscopy. The spectroscopic studies showed that TSC1 is coordinated to the central metal as a tridendate ligand coordinating via the azomethine nitrogen (C=N), phenolic oxygen, and sulfur to ruthenium in 1, whereas TSC2 and TSC3 are coordinated to ruthenium as a bidentate ligand through azomethine nitrogen (C=N) and sulfur in 2 and 3. Oxygen sensitivities of 1–3 and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC4)] (4), and antimicrobial activities of 1–3 have been determined.  相似文献   

17.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

18.
    
Reactions of the cyanide complexes of the type [(Ind)Ru(PPh3)2CN] (1), [(Ind)Ru(dppe)CN] (2), [(Cp)Ru(PPh3)2CN] (3), with the corresponding chloro complexes [(Ind)Ru(PPh3)2Cl] (4), [(Ind)Ru(dppe)Cl] (5), [(Cp)Ru(PPh3)2Cl] (6), in the presence of NH4PF6 salt give homometallic cyano-bridged compounds of the type [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Cp)]PF6 (7), [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Ind)] PF6 where Ind = indenyl, η5-C9H7, (8), [(Cp)(PPh3)2Ru-CN-Ru(dppe)(Ind)]PF6, dppe = (Ph2PCH2CH2PPh2) (9), [(Ind(dppe)Ru-CN-Ru(PPh3)2(Ind)PF6 (10) and [(Ind)(dppe)Ru-CN-Ru(PPh3)2(Cp)]PF6 (11) respectively. Reaction of complex3 with [(p-cymene)RuCl2]2 dimer gave a mixed dimeric complex [(Cp)Ru(PPh3)2-CN-RuCl2(p-cymene)] (12). All these complexes have been characterized by IR,1H,13C and31P NMR spectroscopy and C, H, N analyses.  相似文献   

19.
Reactions of trans-[ReOCl3(PPh3)2] and trans-[ReO(OEt)I2(PPh3)2] with 2-aminophenol (H2ap) in acetonitrile led to the formation of cis-[ReOCl2(Hap)(PPh3)] (1) and trans-[Re(ap)(Hap)I(PPh3)2]I (2), respectively. The X-ray crystal structures show that Hap is coordinated as a bidentate chelate via the neutral amino nitrogen and deprotonated phenolate oxygen, and ap is coordinated as a monodentate through the imido nitrogen. The complexes have been characterized by IR spectroscopy, NMR spectrometry and X-ray crystallography. The bite angle of the Hap chelate is 76.9(1)° and 76.0(1)° in 1 and 2, respectively.  相似文献   

20.
The neutral, mononuclear complex [ReO(mta)2Cl] (1) [Hmta?=?2-(methylmercapto)aniline] was prepared by reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of Hmta in methanol. The oxo-bridged dimer (μ-O)[ReO(mta)2]2 (2) was synthesized by reacting [ReOCl3(PPh3)2] with a twofold excess of Hmta in a 9?:?1 acetone/water mixture. The compounds were characterized by spectroscopy and complex 1 also by X-ray crystallography. Complex 1 has a distorted octahedral geometry with the chloride coordinated trans to the oxo group, and with the chelating ligands in the equatorial plane in a cis-N cis-S configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号