首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.  相似文献   

2.
The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the reoativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.  相似文献   

3.
In this paper, we study Lie symmetry and conserved quantities for a mechanical-electrical system. The criterion of the Lie symmetry for this system is given. The generalized Hojman conserved quantity and generalized Lutzky conserved quantity deduced from the Lie symmetry for the system are obtained. An example is presented to illustrate the results.  相似文献   

4.
The Mei symmetry and the Lie symmetry of a rotational relativistic variable masssystem are studied. Thedefinitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system aregiven. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Meisymmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.  相似文献   

5.
In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity and the Lutzky conserved quantity deduced from the symmetry are obtained.  相似文献   

6.
In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity and the Lutzky conserved quantity deduced from the symmetry are obtained.  相似文献   

7.
The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.  相似文献   

8.
Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.  相似文献   

9.
方建会  张斌  张伟伟  徐瑞莉 《中国物理 B》2012,21(5):50202-050202
In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given.Meanwhile,an example is discussed to illustrate the application of the results.The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.  相似文献   

10.
In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.  相似文献   

11.
A new type of conserved quantity, which is induced from the Mei symmetry of Lagrange systems, is studied. The conditions for that the new type of conserved quantity exists and the form of the new type of conserved quantity are obtained. An illustrated example is given. The Noether conserved quantity induced from the Mei symmetry of Lagrange systems is a special case of the new type of conserved quantity given in this paper.  相似文献   

12.
Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function is introduced, the conditions under which the Mei symmetry can directly lead to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The result indicates that the coordination function can be selected properly according to the demand of the gauge function, thereby the gauge function can be found out more easily. Furthermore, since the choice of the coordination function has multiformity, much T more conserved quantity of Mei symmetry for holonomic mechanical system can be obtained.  相似文献   

13.
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.  相似文献   

14.
In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.  相似文献   

15.
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomic mechanic systems with unilateral constraints are established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups are also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.  相似文献   

16.
In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last.  相似文献   

17.
In this paper, the form invariance and the Lie symmetry of Lagrange's equations for nonconservative system in generalized classical mechanics under the infinitesimal transformations of group are studied, and the Noether's conserved quantity, the new form conserved quantity, and the Hojman's conserved quantity of system are derived from them. Finally, an example is given to illustrate the application of the result.  相似文献   

18.
In this paper, we study the Lie symmetrical non-Noether conserved quantity of the differential equations of motion of mechanical system in phase space under the general infinitesimal transformations of groups. Firstly. we give the determining equations of the Lie symmetry of the system. Secondly, the non-Noether conserved quantity of the Lie symmetry is derived. Finally, an example is given to illustrate the application of the result.  相似文献   

19.
In this paper, a new type of conserved quantity directly deduced from the Mei symmetry for relativistic variable mass system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The conditions for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.  相似文献   

20.
In this paper, the form invariance and the Lie symmetry of Lagrange's equations for nonconservative system in generalized classical mechanics under the infinitesimal transformations of group are studied, and the Noether's conserved quantity, the new form conserved quantity, and the Hojman's conserved quantity of system are derived from them. Finally, an example is given to illustrate the application of the result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号