首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maltose phosphorylases (EC 2.4.1.8) catalyze the reversible conversion of maltose to glucose and glucose-1-phosphate in the presence of inorganic phosphate. Herein, we describe for the first time the use of a maltose phosphorylase for the synthesis of various anomerically modified diglycosides. The maltose phosphorylase used was isolated from the bacterium Emticicia oligotrophica and showed a high selectivity towards the phosphorolysis of maltose, whereas no phosphorolysis was observed using other glucose-containing disaccharides such as cellobiose, melibiose, sucrose and trehalose. The addition of glucose to various 5-bromo-4-chloro-3-indolyl-glycosides (X-sugars) was used to evaluate the promiscuity of the maltose phosphorylase, and product formation was verified by LC-ESI-MS and MALDI-TOF-MS. The simple expression and purification protocol and the use of maltose as an inexpensive starting material make this maltose phosphorylase from Emticicia oligotrophica a valuable novel biocatalyst for the synthesis of glucose-containing glycosides.  相似文献   

2.
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway and a potential therapeutic target in the management of type 2 diabetes. It catalyzes a reversible reaction: the release of the terminal glucosyl residue from glycogen as glucose 1-phosphate; or the transfer of glucose from glucose 1-phosphate to glycogen. A colorimetric method to follow in vitro the activity of GP with usefulness in structure-activity relationship studies and high-throughput screening capability is herein described. The obtained results allowed the choice of the optimal concentration of enzyme of 0.38 U/mL, 0.25 mM glucose 1-phosphate, 0.25 mg/mL glycogen, and temperature of 37 °C. Three known GP inhibitors, CP-91149, a synthetic inhibitor, caffeine, an alkaloid, and ellagic acid, a polyphenol, were used to validate the method, CP-91149 being the most active inhibitor. The effect of glucose on the IC50 value of CP-91149 was also investigated, which decreased when the concentration of glucose increased. The assay parameters for a high-throughput screening method for discovery of new potential GP inhibitors were optimized and standardized, which is desirable for the reproducibility and comparison of results in the literature. The optimized method can be applied to the study of a panel of synthetic and/or natural compounds, such as polyphenols.  相似文献   

3.
Some important process properties of α-l,4-D-ghican phosphorylases isolated from the bacteriumCorynebacterium callunae and potato tubers (Solatium tuberosum) were compared. Apart from minor differences in their stability and specificity (represented by the maximum degree of maltodextrin conversion) and a 10-fold higher affinity of the plant phosphorylase for maltodextrin (K M of 1.3 g/L at 300 mM of orthophosphate), the performances of both enzymes in a continuous ultrafiltration membrane reactor were almost identical. Product synthesis was carried out over a time course of 300–400 h in the presence or absence of auxiliary pullulanase (increasing the accessibility of the glucan substrate for phosphorolytic attack up to 15–20%). The effect of varied dilution rate and reaction temperature on the resulting productivities was quantitated, and a maximum operational temperature of 40°C was identified.  相似文献   

4.
We determined the apparent rate constants of formation (k1) and hydrolysis (k2) of the Schiff bases formed between pyridoxal 5′-phosphate (PLP) and l-lysine and l-alanine copolymers of different compositions, as well as those formed between PLP and l-lysine and l-glutamic acid copolymers, at various pH values, a temperature of 25 °C and an ionic strength of 0.1 M. The k1 values obtained in neutral and acidic media were independent of the copolymer composition. The efficiency of the intramolecular acid catalysis for the formation of the Schiff bases was found to be somewhat higher than that of PLP—primary amine systems (the slope of the Brøwted plot was α=0.77). The most stable of the Schiff bases studied was that with a protonated imine nitrogen and phosphate group and a unprotonated pyridine nitrogen.  相似文献   

5.
Acetyl and formyl group migration, mutarotation, and hydrolysis of mono‐O‐acylated glucose are studied by in situ 1D and 2D 1H NMR spectroscopy. α‐D ‐Glucosyl‐1‐acetate and α‐D ‐glucosyl‐1‐formate serve as sole starting materials. They are generated in situ by configuration retaining glucosyltransfer from α‐D ‐glucosyl‐1‐phosphate to formate and acetate, which is catalyzed by the Glu‐237 → Gln mutant of Leuconostoc mesenteroides sucrose phosphorylase. Temporary accumulated regio‐isomeric mono‐O‐acyl D ‐glucoses are identified, characterized, and quantified directly from the reaction mixture. Time courses of the transformations give insight into pH dependence of acyl group migration and mutarotation as well as into the stability of various regioisomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Background: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate for glycolysis. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target.Results: The binding site in human liver glycogen phosphorylase (HLGP) for a class of promising antidiabetic agents was identified crystallographically. The site is novel and functions allosterically by stabilizing the inactive conformation of HLGP. The initial view of the complex revealed key structural information and inspired the design of a new class of inhibitors which bind with nanomolar affinity and whose crystal structure is also described. Conclusions: We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes.  相似文献   

7.

Background  

Orthophosphate recognition at allosteric binding sites is a key feature for the regulation of enzyme activity in mammalian glycogen phosphorylases. Protein residues co-ordinating orthophosphate in three binding sites distributed across the dimer interface of a non-regulated bacterial starch phosphorylase (from Corynebacterium callunae) were individually replaced by Ala to interrogate their unknown function for activity and stability of this enzyme.  相似文献   

8.
Abstract

In synthetic pathways to complex carbohydrates such as oligosaccharides or nucleotide sugars the activated sugar 1-phosphates serve as important starting molecules. In this study the enzymatic synthesis of α-glucose-1-phosphate (Glc-1-P) has been investigated using a new bacterial α-glucan phosphorylase from Corynebacterium callunae. The major factors governing the rate of reaction and the attainable degree of substrate conversion have been identified and, accordingly, for optimizing the yield and limiting reaction time for the enzymatic process several points must be considered: (i) the pH-dependent equilibrium of reaction, (ii) product inhibition of the phosphorylase and (iii) enzymatic cleavage of α-1,6 glycosidic linkages present in α-1,4-glucans such as starch or maltodextrins by pullulanases to improve their phosphorolytic conversion. Results obtained in continuous experiments with the phosphorylase retained in an ultrafiltration membrane reactor confirmed the complete operational stability of the enzyme for several days at 30 °C. Since no more than approximately 18 % of the inorganic phosphate can be converted into Glc-1-P an efficient procedure for phosphate and product recovery will be particularly important.  相似文献   

9.
纳米磁粉固定化酶催化合成 α-D-葡萄糖-1-磷酸   总被引:2,自引:0,他引:2  
董青  欧阳立明  刘建文  许建和 《催化学报》2010,31(10):1227-1232
 建立了以麦芽糊精和磷酸盐为底物, 在常温下合成 α-D-葡萄糖-1-磷酸的生物催化体系. 从大肠杆菌 K12 中克隆表达了麦芽糊精磷酸化酶, 并固定化在氨基修饰的磁性纳米颗粒上, 以便于酶的回收和重复利用. 在优化的反应条件下, 于 200 ml 体系中连续使用该固定化酶 8 批次, 催化合成了 α-D-葡萄糖-1-磷酸. 经过简单的纯化步骤, 最终得到 440 mg 产品, 分离产率为 70.5%.  相似文献   

10.
The compound 2-deoxy-2-fluoro-α-d-glucopyranosyl fluoride (F2Glc), which is a nonmetabolized superior glucose analogue, is a potent inhibitor of glycogen phosphorylase and pharmacological properties are reported. Glycogen phosphorylase (GP) and glycogen synthase (GS) are responsible of the degradation and synthesis, respectively, of glycogen which is a polymer of glucose units that provides a readily available source of energy in mammals. GP and GS are two key enzymes that modulate cellular glucose and glycogen levels; therefore, these proteins are suggested as potential targets for the treatment of diseases related to glycogen metabolism disorders. We studied by Western Blot technique that F2Glc decreased GP activity, and we also showed that F2Glc did not affect GS activity and its translocation from a uniform cytosolic distribution to the hepatocyte periphery, which is crucial for glycogen synthesis, using immunoblotting and immunofluorescence labeling techniques. F2Glc specifically inhibits glycogenolysis pathway and permits a greater deposition of glycogen. These observations open up the possibility of further develop drugs that act specifically on GP. The ability to selectively inhibit GP, which is a key enzyme for the release of glucose from the hepatic glycogen reserve, may represent a new approach for the treatment of hyperglycemia in type 2 diabetes.  相似文献   

11.
The apparent rate constants of formation (k1) and hydrolysis (k2) of the Schiff bases formed between pyridoxal 5′-phosphate and the poly(L -Lys,L -Trp)4 : 1 copolymer at different pH values, a temperature of 25 °C and an ionic strength of 0.1 M were determined. The individual rate constants of formation and hydrolysis of the Schiff bases of pyridoxal 5′-phosphate with poly(L -Lys,L -Trp)4 : 1, poly(L -Lys,L -Tyr)4 : 1, and poly(L -Lys,L -Phe)1 : 1 corresponding to the different chemical species present in the medium as a function of its acidity were also determined, as were the pK values for the Schiff bases. The significance of the interactions between the pyridine ring in pyridoxal 5′-phosphate and the aromatic ring in the L -phenylalanine, L -tyrosine, and L -tryptophan side chains is demonstrated.  相似文献   

12.
The mechanism of chemical transformations of pyridoxal and pyridoxal 5′-phosphate condensation products with amino acids is studied by kinetic measurements. The Schiff bases are shown to be fairly stable in neutral media. In acid media, the Schiff bases are hydrolyzed into the initial components. In alkaline media, cleavage of α-hydrogen from the amino acid fragment and structural rearrangement into the quinoid form followed by hydrolysis of the latter with elimination of pyridoxamine and keto acid take place. The rate constants of the chemical transformations of the Schiff bases are found to depend on the pH of the medium. It is shown for the first time that the phosphate group in the pyridoxal 5′-phosphate fragment catalyzes the α-hydrogen cleavage and strongly accelerates alkaline decomposition of the Schiff bases.  相似文献   

13.
A series of glucosyl esters surfactants were synthesized based on glucose molecule by enzymatic catalysis. It could reach the highest esterification yield of 83.4% at the optimal condition, molar ratio of D-glucose and fatty acyl amino acid as 3:2 using 11% (w/w) enzyme catalyst Lipozyme 435 as catalyst in t-butanol at 40°C. The surface activities were studied, such as the critical micelle concentration (CMC), surface tension (γcmc), maximum excess concentration (Γmax), minimum surface area/molecule (Amin), and the adsorption efficiency (pC20); values of these were obtained by surface tension test. The results show that the longer the hydrophobic chain length, the lower the CMC and γcmc. The CMCs of novel glucosyl esters were between 4.4 and 1.5 mM. Further, the micellization physiochemical parameters, including Gibbs free energy of micellization (ΔG), standard enthalpy change (ΔH), and standard entropy change (ΔS) were calculated. It was indicated the micellization of glucosyl esters 9–16 was driven by entropy and deduced at different temperature.  相似文献   

14.
1,3-Dipolar cycloaddition of aryl nitrile oxides to benzyl/acetyl-protected exo-glucals and to a benzoylated glucosyl cyanide led in high yield to spiro-isoxazolines and to 3-aryl-5-glucosyl-1,2,4-oxadiazoles, respectively. The choice of the protective groups was important to the outcome of the cycloaddition and for the deprotection of the adducts. Cleavage of the ester protecting groups (acetyl, benzoyl) provided water-soluble spiro-isoxazolines and 3-aryl-5-glucosyl-1,2,4-oxadiazoles, evaluated as glycogen phosphorylase inhibitors. Preliminary tests showed IC50 values in the μM range.  相似文献   

15.
Glycosyltransferases (GTs) are a key family of enzymes that catalyze the synthesis of glycosidic bonds in all living organisms. The reaction involves the transfer of a glycosyl moiety and can proceed with retention or inversion of the anomeric configuration. To date, the catalytic mechanism of retaining GTs is a topic of great controversy, particularly for those enzymes containing a putative nucleophilic residue in the active site, for which the occurrence of a double‐displacement mechanism has been suggested. We report native ternary complexes of the retaining glycosyltransferase α‐1,3‐galactosyltransferase (α3GalT) from Bos taurus , which contains such a nucleophile in the active site, in a productive mode for catalysis in the presence of its sugar donor UDP‐Gal, the acceptor substrate lactose, and the divalent cation cofactor. This new experimental evidence supports the occurrence of a front‐side substrate‐assisted SNi‐type reaction for α3GalT, and suggests a conserved common catalytic mechanism among retaining GTs.  相似文献   

16.
《Tetrahedron: Asymmetry》2000,11(2):405-408
A high yielding, simple synthesis is described starting from d-glucose to produce gram quantities of a glucopyranosylidene-spiro-thiohydantoin. This compound efficiently inhibited the activity of rat liver glycogen phosphorylase a; moreover, it also activated phosphorylase phosphatase which, in turn, decreased the amount of glycogen phosphorylase a. Both effects result in the inhibition of glycogen mobilization and the formation of glucose from glycogen.  相似文献   

17.
Bioreduction of 1-phenyl-2-propanone to prepare (S)-1-phenyl-2-propanol, a useful pharmaceutical intermediate, was performed with growing cells of Rhodococcus erythropolis JX-021, giving 14 mM (1.9 g/L) product in 99% e.e. at 5 h in the catalysis of 15 mM substrate. The reduction stopped afterwards due to strong inhibition of substrate and formed product, a problem that is often encountered in biotransformation. While the substrate inhibition was solved by stepwise feeding, product inhibition was tackled by different methods: repeated removal of the product by centrifugation, by absorption with Amberlite XAD-7 resin, and by the use of dodecanol as the second phase gave the final product in 58, 68, and 61 mM in the catalysis of 80 mM substrate, respectively. The inhibition was caused by the partial permeabilization of cell membrane of R. erythropolis JX-021, and addition of NADPH or glucose 6-phosphate to such cell culture retained the reduction activity. Therefore, higher productivity in the reduction of 1 with resting cells of R. erythropolis JX-021 was achieved through cofactor regeneration and recycling by the addition of glucose and permeabilized cells of Bacillus subtilis BGSC 1A1 containing a glucose dehydrogenase, giving the product in 62 mM without addition of cofactor and 78 mM with the addition of 0.01 mM NADP+ in the catalysis of 120 mM substrate. The product e.e. retained 99% during the process which showed industrial possibility.  相似文献   

18.
A new cubic form (space group F3m) of the title compound has been found which is isostructural with the analogous arsenate. [Mg(H2O)6]2+ cations and phosphate anions are connected by hydrogen bonds, forming a sphalerite‐like three‐dimensional framework.  相似文献   

19.
Whereas copper‐catalyzed azide–alkyne cycloaddition (CuAAC) between acetylated β‐D ‐glucosyl azide and alkyl or phenyl acetylenes led to the corresponding 4‐substituted 1‐glucosyl‐1,2,3‐triazoles in good yields, use of similar conditions but with 2 equiv CuI or CuBr led to the 5‐halogeno analogues (>71 %). In contrast, with 2 equiv CuCl and either propargyl acetate or phenyl acetylene, the major products (>56 %) displayed two 5,5′‐linked triazole rings resulting from homocoupling of the 1‐glucosyl‐4‐substituted 1,2,3‐triazoles. The 4‐phenyl substituted compounds (acetylated, O‐unprotected) and the acetylated 4‐acetoxymethyl derivative existed in solution as a single form (d.r.>95:5), as shown by NMR spectroscopic analysis. The two 4‐phenyl substituted structures were unambiguously identified for the first time by X‐ray diffraction analysis, as atropisomers with aR stereochemistry. This represents one of the first efficient and highly atropodiastereoselective approaches to glucose‐based bis‐triazoles as single atropisomers. The products were purified by standard silica gel chromatography. Through Sonogashira or Suzuki cross‐couplings, the 1‐glucosyl‐5‐halogeno‐1,2,3‐triazoles were efficiently converted into a library of 1,2,3‐triazoles of the 1‐glucosyl‐5‐substituted (alkynyl, aryl) type. Attempts to achieve Heck coupling to methyl acrylate failed, but a stable palladium‐associated triazole was isolated and analyzed by 1H NMR and MS. O‐Unprotected derivatives were tested as inhibitors of glycogen phosphorylase. The modest inhibition activities measured showed that 4,5‐disubstituted 1‐glucosyl‐1,2,3‐triazoles bind weakly to the enzyme. This suggests that such ligands do not fit the catalytic site or any other binding site of the enzyme.  相似文献   

20.
The potential energy surfaces for the transamination reaction catalyzed by SSAO were explored for some of the possible reactants considered in a preliminary investigation (Comput Chem 2000, 24 , 311). The proton transfer to methylamine (as a model of the catalytic base belonging to the enzyme active site)—either from the keto or enol form of the reactant Schiff bases with one of the possible cofactors, pyridoxal phosphate, PLP (using as a model the pyridoxal ring protonated at N)—was investigated. The enol form seems to be preferred in the region of the neutral intermediate, because even the keto form undergoes a spontaneous rearrangement to the enol form once the Cα proton is delivered to methylamine, producing methylammonium. When the proton is returned back to the Schiff base (on C1), the adduct is about 1.4 kcal/mol more stable than the reactants, while a canonical electron distribution is obtainable only for the enol form. The proton transfer to methylamine was also studied in the presence of the other possible cofactor (para or ortho) topaquinone, TQ. A steep uphill pathway, similar to the keto‐pyridoxal Schiff base one, is obtained using the Schiff base with pTQ, which requires a rearrangement to the final intermediate. On the contrary, using the oTQ structures with the quinonoid O on the same side of methylamine, the proton abstracted from the Schiff base goes spontaneously onto the other quinonoid oxygen. The effect on the barrier heights produced by the presence of a variety of functional groups in the vicinity of the pyridoxal ring nitrogen was also examined. © 2001 John Wiley & Sons, Inc. Int J Quant Chem, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号