首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The maximum of the transferred magnetization in rotating powdered solids under the radiofrequency-driven recoupling (RFDR) pulse sequence is enhanced by reducing the orientation dependence of the effective recoupled homonuclear dipolar interaction. The compound RFDR (CRFDR) pulse sequence for this enhancement consists of RFDR pulse units (tau(i)-pi-tau(R)-pi-1171;tau(i)) with different tau(i), where tau(R) is the sample rotation period, tau(i) and 1171;tau(i) (=tau(R) - tau(i)) are delays, and pi is a 180 degrees pulse. The delay tau(i) modifies the zero-quantum spin operators and the sample rotation-angle dependence of the recoupled dipolar Hamiltonian. The CRFDR pulse sequences were optimized for mixing by varying tau(i). Numerical simulation for the two-spin system only with a dipolar interaction and isotropic chemical shifts indicates that the transfer efficiency of CRFDR averaged over the powder is about 70%, which is 30% higher than the efficiency of the RFDR pulse over a broad range of about 1/tau(R) in resonance frequency difference. The CRFDR sequences need about 60% longer mixing times to maximize the transferred magnetizaion in comparison with the original RFDR sequence. Chemical shift anisotropy, the other dipolar interactions, and relaxation generally reduce the enhancement by CRFDR. Experiments for fully (13)C-labeled alanine, however, show that the maximum of the magnetization transferred with CRFDR from the carboxyl to alpha carbon is about 15% greater than that with RFDR. Copyright 2000 Academic Press.  相似文献   

3.
Solid-state magic-angle-spinning NMR pulse sequences which implement zero-quantum homonuclear dipolar recoupling are designed with the assistance of symmetry theory. The pulse sequences are compensated on a short time scale by the use of composite pulses and on a longer time scale by the use of supercycles. (13)C dipolar recoupling is demonstrated in powdered organic solids at high spinning frequencies. The new sequences are compared to existing pulse sequences by means of numerical simulations. Experimental two-dimensional magnetization exchange spectra are shown for [U-(13)C]-L-tyrosine.  相似文献   

4.
A method is proposed for the quantitative measurement of orientational anisotropy in glassy solids based on 2D dipolar NMR spectra with sample flipping (dipolar DECODER experiment). Purely dipolar spectra are obtained by chemical shift refocusing by a multiple pulse sequence. The experiment is applied to an investigation of a doubly13C-labeled sample of bisphenol-A polycarbonate deformed in a channel-die apparatus. The orientational distribution function is determined by an expansion of the distribution in terms of spherical harmonics up to degree four.  相似文献   

5.
The often annoying imperfections in the phases and pulses of typical radiofrequency multiple-pulse irradiation schemes for homonuclear dipolar decoupling are revisited and analysed here. The analysis is with respect to one such multiple-pulse sequence, namely, the windowed phase-modulated Lee-Goldburg sequence. The error terms in the Hamiltonian due to pulse imperfections may lead to effective rotation of the spins around the z-axis giving rise to image free and high-resolution 1H spectra. Certain precautions to be taken with regard to scale factor estimation are also detailed. The analysis also points out the range of off-set values where the best homonuclear dipolar decoupling performance of a particular pulse scheme may be obtained.  相似文献   

6.
Magnetic relaxation in solids may be complicated by the creation and loss of dipolar order at finite rates. In tissues the molecular and spin dynamics may be significantly different because of the relatively high concentration of water. We have applied a modified Jeneer-Broekaert pulse sequence to measure dipolar relaxation rates in both dry and hydrated protein systems that may serve as magnetic models for tissue. In lyophilized and dry serum albumin, the dipolar relaxation time, T(1D) is on the order of 1 ms and is consistent with earlier reports. When hydrated by deuterium oxide, the dipolar relaxation times measured were on the order of tens of microseconds. When paramagnetic centers are included in the protein, the Jeneer-Broekaert echo decay times became the order of the decay time for transverse magnetization, i.e., the order of 10 micros or less. In the hydrated or paramagnetic systems, the dipolar relaxation times are too short to require inclusion in the quantitative analysis of magnetization transfer experiments.  相似文献   

7.
Magnetic field gradients have proven useful in NMR for coherence pathway selection, diffusion studies, and imaging. Recently they have been combined with magic angle spinning to permit high-resolution measurements of semi-solids, where magic angle spinning averages any residual dipolar couplings and local variations in the bulk magnetic susceptibility. Here we show the first examples of coherence pathway selection by gradients in dipolar coupled solids. When the gradient evolution competes with dipolar evolution the experiment design must take into account both the strength of the dipolar couplings and the means to refocus it. Examples of both homonuclear and heteronuclear experiments are shown in which gradients have been used to eliminate the need for phase cycling.  相似文献   

8.
Residual dipolar couplings for pairs of proximate magnetic nuclei in macromolecules can easily be measured using high-resolution NMR methods when the molecules are dissolved in dilute liquid crystalline media. The resulting couplings can in principle be used to constrain the relative orientation of molecular fragments in macromolecular systems to build a complete structure. However, determination of relative fragment orientations based on a single set of residual dipolar couplings is inherently hindered by the multi-valued nature of the angular dependence of the dipolar interaction. Even with unlimited dipolar data, this gives rise to a fourfold degeneracy in fragment orientations. In this Communication, we demonstrate a procedure based on an order tensor analysis that completely removes this degeneracy by combining residual dipolar coupling measurements from two alignment media. Application is demonstrated on (15)N-(1)H residual dipolar coupling data acquired on the protein zinc rubredoxin from Clostridium pasteurianum dissolved in two different bicelle media.  相似文献   

9.
A modified CRAZED pulse sequence was applied to obtain the intermolecular multiple-quantum coherence NMR signals from double distant dipolar fields in highly polarized spin systems. Complete theoretical analyses were explicitly derived from the dipolar field treatment combined with product operator formalism. Two typical samples containing several different components were chosen for the experimental verifications. The computer simulations and experimental observations are consistent with the theoretical predictions. The results presented herein provide a convenient way to understand the combined effects of multiple distant dipolar fields from the different components in complicated chemical or biological solutions. When experimental conditions such as selective radio-frequency pulses are not optimal, it may be helpful to identify possible unexpected signals or artefacts of high-resolution NMR spectroscopy in inhomogeneous fields.  相似文献   

10.
A pulse sequence is described that leads to a broadband recoupling of the dipolar interaction in magic-angle-spinning solid-state NMR experiments of13C spins. The sequence is based on a combination of rotating frame and laboratory frame transfer periods. The recovered dipolar interaction is only weakly dependent on spectral parameters but is a faithful measure for the internuclear distances. Furthermore, a pure zero-quantum term is recovered (of the type found in static “spin-diffusion” experiments). This makes the pulse sequence particularly suited for incorporation into two-dimensional total through-space correlation experiments that deliver simultaneous information about all dipolar couplings in a single 2D experiment. It is found that the necessary decoupling from abundant protons is best performed in two steps: first, the strong homonuclear couplings between the high-γ spins are averaged by Lee–Goldburg irradiation and, second, the heteronuclear dipolar interaction is averaged by the combined application of an RF field to the low-γ spins and magic-angle sample spinning. Phase-inversion and amplitude attenuation in the rotating frame and refocusing pulses in the laboratory frame part of the pulse sequence are introduced to achieve an optimum chemical-shift offset-independence and for the suppression of unwanted double-quantum transitions. The design principles are explained in detail. Finally, the pulse scheme is applied to total-correlation spectroscopy of a uniformly labeled amino acid. The experimental cross-peak intensities are in qualitative agreement with the known crystal structure of the model compound.  相似文献   

11.
Stimulated-echo spectroscopy has recently been applied to study the ultra-slow dynamics of nuclear spin-3/2 probes such as 7Li and 9Be in solids. Apart from the dominant first-order quadrupolar interaction in the present article also the impact of the homonuclear dipolar interactions is considered in a simple way: the time evolution of a dipole coupled pair of spins with I = 3/2 is calculated in an approximation, which takes into account that the satellite transitions usually do not overlap. Explicit analytical expressions describing various aspects of a coupled quadrupolar pair subjected to a Jeener-Broekaert pulse sequence are derived. Extensions to larger spin systems are also briefly discussed. These results are compared with experimental data on a single-crystalline Li ion conductor.  相似文献   

12.
Stimulated-echo spectroscopy has recently been applied to study the ultra-slow dynamics of nuclear spin-3/2 probes such as 7Li and 9Be in solids. Apart from the dominant first-order quadrupolar interaction in the present article also the impact of the homonuclear dipolar interactions is considered in a simple way: the time evolution of a dipole coupled pair of spins with I = 3/2 is calculated in an approximation, which takes into account that the satellite transitions usually do not overlap. Explicit analytical expressions describing various aspects of a coupled quadrupolar pair subjected to a Jeener-Broekaert pulse sequence are derived. Extensions to larger spin systems are also briefly discussed. These results are compared with experimental data on a single-crystalline Li ion conductor.  相似文献   

13.
Fast magic-angle spinning (MAS) holds promise for new approaches to pulsed high-resolution NMR in solids where homogeneous interactions dominate. Prerequisite for developing new pulse methods is the understanding of signal encoding by spin interactions under MAS conditions and of interferences between MAS and pulses. This review discusses corresponding strategies and techniques in a coherent way with particular concentration on homonuclear decoupling techniques for line-narrowing in solids.  相似文献   

14.
The response to spin-echo radiofrequency pulse excitation of a variety of nonintegral-spin quadrupolar nuclei (23Na, 27Al, and 93Nb) in inorganic solids (single-crystal ruby and sapphire, α-Al2O3, γ-Al2O3, AlN, NaNO3, KNbO3, NaNbO3, LiNbO3, albite, and the zeolite Linde A), subject to strong quadrupolar interactions and dipolar interactions of varying strength, is reported. It is demonstrated that "soft" RF pulse excitation with a pair of selective π/2 and π pulses yields predictable spin-echo decay behavior as a function of dipolar interaction, the experimental results being in good agreement with the theoretical predictions.  相似文献   

15.
By pulsed double electron-electron resonance (DEER), distances between spin labels in disordered systems up to 8 nm can be measured. In addition, the relative orientation of the interacting radicals can be determined, provided that the bandwidth of the pulses is sufficiently small. On the other hand, the bandwidth has to exceed the dipolar interaction considerably, because otherwise the DEER modulations become distorted and the modulation depth decreases, making distance determination impossible. Therefore, small bandwidths, i.e. long pulses, place a lower limit on the distance that can be determined. Two new pulse sequences, observer-selective DEER (os-DEER) and dead-time free os-DEER, are introduced that make it possible to use long observer pulses with bandwidths that are smaller than the dipolar interaction. The new pulse sequences do not suffer from the distortions caused by the limited bandwidth of the observer pulses, as demonstrated by measurements on a nitroxide biradical. With observer pulses of 140 ns, i.e., significantly longer than the 32 ns used in the conventional DEER sequence, a dipolar interaction of 7.8 MHz has been measured.  相似文献   

16.
The effect of proton exchange on the measurement of 1H-1H, 1H-2H, and 2H-2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the 1H-1H and 1H-2H residual dipolar interactions and the proton exchange rate at a temperature of 24 degrees C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24 degrees C were 300 and 50 Hz and 3000 s-1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5 degrees C, where the spectra of the H2O molecules were well resolved, so that the 1H-1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5 degrees C, where the proton exchange was in the intermediate regime for the 1H-2H dipolar interaction, confirmed the result obtained at 24 degrees C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.  相似文献   

17.
Recovery of the magnetic dipolar interaction between nuclei bearing the same gyromagnetic ratio in rotating solids can be promoted by synchronous rf irradiation. Determination of the dipolar interaction strength can serve as a tool for structural elucidation in polycrystalline powders. Spinning frequency dependent narrow-band (nb) RFDR and SEDRA experiments are utilized as simple techniques for the determination of dipolar interactions between the nuclei in coupled homonuclear spin pairs. The magnetization exchange and coherence dephasing due to a fixed number of rotor-synchronously applied pi-pulses is monitored at spinning frequencies in the vicinity of the rotational resonance (R(2)) conditions. The powder nbRFDR and nbSEDRA decay curves of spin magnetizations and coherences, respectively, as a function of the spinning frequency can be measured and analyzed using simple rate equations providing a quantitative measure of the dipolar coupling. The effects of the phenomenological relaxation parameters in these rate equations are discussed and an improved methodology is suggested for analyzing nbRFDR data for small dipolar couplings. The distance between the labeled nuclei in the 1,3-(13)C(2)-hydroxybutyric acid molecule is rederived using existing nbRFDR results and the new simulation procedure. A nbSEDRA experiment has been performed successfully on a powder sample of singly labeled 1-(13)C-L-leucine measuring the dipolar interaction between the labeled carboxyl carbon and the natural abundant beta-carbon. Both narrowband techniques are employed for the determination of the nuclear distances between the side-chain carbons of leucine and its carbonyl carbon in a tripeptide Leu-Gly-Phe that is singly (13)C-labeled at the leucine carbonyl carbon position.  相似文献   

18.
A new pulse sequence for high-resolution solid-state heteronuclear double-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. It is based on the five-pulse sequence known from solution-state NMR, which is here applied synchronously to both spin species. The heteronuclear double-quantum (HeDQ) spinning-sideband patterns produced by this experiment are shown to be sensitive to the heteronuclear distance, as well as the relative orientations of the chemical-shift and dipolar tensors. In particular, it is shown that the HeDQ patterns exhibit an enhanced sensitivity to the chemical shielding tensors as compared with the single-quantum spinning-sideband patterns. The detection of HeDQ patterns via the I and S spins is discussed. The isolated (13)C-(1)H spin pair in deuterated ammonium formate with (13)C in natural abundance was chosen as a model system, and the perturbing influence of dipolar couplings to surrounding protons on the (13)C-(1)H DQ coherence is discussed. The pulse sequence can also be used as a heteronuclear double-quantum filter, hence providing information about heteronuclear couplings, and thus allowing the differentiation of quaternary and CH(n) bonded carbons. The elucidation of (13)C-(1)H dipolar proximities is presented for a sample of bisphenol A polycarbonate with (13)C in natural abundance, recorded with a broadband version of the synchronized five-pulse sequence.  相似文献   

19.
A method for imaging of spectral parameters of solid samples is presented. The detected NMR signals are Jeener-Broekaert echoes. No read field gradient is applied during the acquisition, so that wide-line spectral parameters can be evaluated and be transferred to image contrasts. On the other hand, multipulse line-narrowing sequences can be applied during the echoes in order to obtain high-resolution spectra. The imaging principle is a pure phase-encoding Fourier technique in two or three dimensions. The phase-encoding gradients are active in the interval between the first two pulses of the Jeener-Broekaert three-pulse sequence. Between the second and the third pulse, the information is conserved in the dipolar (or quadrupolar) order state which is insensitive to field gradients and governed by the relatively slow dipolar (or quadrupolar) relaxation. This interval therefore can be chosen to be long enough to switch the gradients off. The third pulse “reads” the information of the spin-state order and produces an echo under homogeneous field conditions. In the case of two-dimensional imaging, a slice is preselected prior to the whole Jeener-Broekaert sequence by the aid of a LOSY slice-selection pulse. Test experiments are reported, and applications to polymer and biological materials are discussed.  相似文献   

20.
An experiment for acquiring two-dimensional homonuclear correlation spectra of nuclei in solids in the presence of strong homonuclear dipolar couplings is described. The experiment utilizes a multiple-pulse homonuclear decoupling sequence with an effective precession axis parallel to the rotating frame z-axis during the evolution and detection periods. A multiple-pulse sequence that suppresses chemical shift and heteronuclear dipolar coupling evolution and scales the static homonuclear dipolar coupling is proposed for the mixing period. The evolution during the mixing period is analogous to the dynamics of the mixing period in solution-state TOCSY experiments, and can be interpreted as the oscillatory exchange of longitudinal magnetization between coupled spins. For nuclides with large gyromagnetic ratios, the static homonuclear dipolar interaction will be substantially larger than the mechanisms used to develop internuclear correlations in solution state 2-D experiments, which should make it possible to establish correlations over much longer distances and with significantly shorter mixing times. Extensions to separated local field experiments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号