首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We study the transverse spectral stability of the one-dimensional small-amplitude periodic traveling wave solutions of the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) equation. We show that these waves are transversely unstable with respect to two-dimensional perturbations that are periodic in both directions with long wavelength in the transverse direction. We also show that these waves are transversely stable with respect to perturbations which are either mean-zero periodic or square-integrable in the direction of the propagation of the wave and periodic in the transverse direction with finite or short wavelength. We discuss the implications of these results for special cases of the KD equation—namely, KP-II and mKP-II equations.  相似文献   

2.
We show that periodic traveling waves with sufficiently small amplitudes of the Whitham equation, which incorporates the dispersion relation of surface water waves and the nonlinearity of the shallow water equations, are spectrally unstable to long‐wavelengths perturbations if the wave number is greater than a critical value, bearing out the Benjamin–Feir instability of Stokes waves; they are spectrally stable to square integrable perturbations otherwise. The proof involves a spectral perturbation of the associated linearized operator with respect to the Floquet exponent and the small‐amplitude parameter. We extend the result to related, nonlinear dispersive equations.  相似文献   

3.
The Kadomtsev–Petviashvili (KP) equation possesses a four‐parameter family of one‐dimensional periodic traveling waves. We study the spectral stability of the waves with small amplitude with respect to two‐dimensional perturbations which are either periodic in the direction of propagation, with the same period as the one‐dimensional traveling wave, or nonperiodic (localized or bounded). We focus on the so‐called KP‐I equation (positive dispersion case), for which we show that these periodic waves are unstable with respect to both types of perturbations. Finally, we briefly discuss the KP‐II equation, for which we show that these periodic waves are spectrally stable with respect to perturbations that are periodic in the direction of propagation, and have long wavelengths in the transverse direction.  相似文献   

4.
The bidomain model is the standard model describing electrical activity of the heart. Here we study the stability of planar front solutions of the bidomain equation with a bistable nonlinearity (the bidomain Allen‐Cahn equation) in two spatial dimensions. In the bidomain Allen‐Cahn equation a Fourier multiplier operator whose symbol is a positive homogeneous rational function of degree two (the bidomain operator) takes the place of the Laplacian in the classical Allen‐Cahn equation. Stability of the planar front may depend on the direction of propagation given the anisotropic nature of the bidomain operator. We establish various criteria for stability and instability of the planar front in each direction of propagation. Our analysis reveals that planar fronts can be unstable in the bidomain Allen‐Cahn equation in striking contrast to the classical or anisotropic Allen‐Cahn equations. We identify two types of instabilities, one with respect to long‐wavelength perturbations, the other with respect to medium‐wavelength perturbations. Interestingly, whether the front is stable or unstable under long‐wavelength perturbations does not depend on the bistable nonlinearity and is fully determined by the convexity properties of a suitably defined Frank diagram. On the other hand, stability under intermediate‐wavelength perturbations does depend on the choice of bistable nonlinearity. Intermediate‐wavelength instabilities can occur even when the Frank diagram is convex, so long as the bidomain operator does not reduce to the Laplacian. We shall also give a remarkable example in which the planar front is unstable in all directions.© 2016 Wiley Periodicals, Inc.  相似文献   

5.
6.
We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.  相似文献   

7.
Propagation of nonlinear shear horizontal (SH) waves in a homogeneous, isotropic and incompressible elastic plate of uniform thickness is considered. The constituent material of the plate is assumed to be generalized neo-Hookean. By employing a perturbation method and balancing the weak nonlinearity and dispersion in the analysis, it is shown that the nonlinear modulation of waves is governed asymptotically by a nonlinear Schr?dinger (NLS) equation. Then the effect of nonlinearity on the propagation characteristics of asymptotic waves is discussed on the basis of this equation. It is found that, irrespective of the plate thickness, the wave number and the mode number, when the plate material is softening in shear then the nonlinear plane periodic waves are unstable under infinitesimal perturbations and therefore the bright (envelope) solitary SH waves will exist and propagate in such a plate. But if the plate material is hardening in shear in this case nonlinear plane periodic waves are stable and only the dark solitary SH waves may exist.  相似文献   

8.
A two-dimensional linear analysis of the planar flame front stability for a compressible fluid is presented. The analysis shows that there are two types of perturbations. The first type, corresponding to waves in incompressible media, has already been studied by Landau. It predicts absolute instability of the flame front. The second type of perturbations is due to fluid compressibility and the dependence on upstream flow parameters of the flame front velocity. Three different regimes for these perturbations are possible: stable, acoustically unstable, and absolutely unstable. The instability results in a pronounced pressure wave generation.A one-dimensional analysis of the interaction of the flame front with flow boundaries is performed. Under some circumstances, this interaction is shown to cause exponential growth of the perturbations.  相似文献   

9.
The evolution of growing and decaying one-dimensional linear perturbations on a stationary, weakly inhomogeneous background is investigated studied. Attention is focused on the amplification of waves that arise from initial perturbations, localized in regions whose width is small compared with the inhomogeneity scale. A relation between the Hamiltonian formalism (with a complex dispersion equation) and the saddle-point method is established for an asymptotic representation of the integral that expresses perturbations in terms of the initial data. Model examples of the evolution of perturbations are examined.  相似文献   

10.
In this paper, we investigate the transverse linear instability of one-dimensional solitary wave solutions of the coupled system of two-dimensional long-wave–short-wave interaction equations. We show that the one-dimensional solitary waves are linearly unstable to perturbations in the transverse direction if the coefficient of the term associated with transverse effects is negative. This transverse instability condition coincides with the non-existence condition identified in the literature for two-dimensional localized solitary wave solutions of the coupled system.  相似文献   

11.
Ostrovsky equation describes the propagation of long internal and surface waves in shallow water in the presence of rotation. In this model dispersion is taken into account while dissipation is neglected. Existence and nonexistence of localized solitary waves is classified according to the sign of the dispersion parameter (which can be either positive or negative). It is proved that for the case of positive dispersion the set of solitary waves is stable with respect to perturbations. The issue of passing to the limit as the rotation parameter tends to zero for solutions of the Cauchy problem is investigated on a bounded time interval.  相似文献   

12.
We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability.  相似文献   

13.
Working in the context of localized modes in periodic potentials, we consider two systems of the massive Dirac equations in two spatial dimensions. The first system, a generalized massive Thirring model, is derived for the periodic stripe potentials. The second one, a generalized massive Gross–Neveu equation, is derived for the hexagonal potentials. In both cases, we prove analytically that the line solitary waves are spectrally unstable with respect to periodic transverse perturbations of large periods. The spectral instability is induced by the spatial translation for the generalized massive Thirring model and by the gauge rotation for the generalized massive Gross–Neveu model. We also observe numerically that the spectral instability holds for the transverse perturbations of any period in the generalized massive Thirring model and exhibits a finite threshold on the period of the transverse perturbations in the generalized massive Gross–Neveu model.  相似文献   

14.
In this paper, based on a multidimensional Riemann theta function, a lucid and straightforward generalization of the Hirota-Riemann method is presented to explicitly construct multiperiodic Riemann theta functions periodic wave solutions for nonlinear equations such as the Caudrey-Dodd-Gibbon-Sawada-Kotera equation and (2+1)-dimensional breaking soliton equation. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional so that they have two independent spatial periods in two independent horizontal directions. A limiting procedure is presented to analyze in detail, asymptotic behavior of the multiperiodic waves and the relations between the periodic wave solutions and soliton solutions are rigorously established. This generalized Hirota-Riemann method can also be demonstrated on a class variety of nonlinear difference equations such as Toeplitz lattice equation.  相似文献   

15.
We consider a strongly nonlinear long wave model for large amplitude internal waves in two-layer flows with the top free surface. It is shown that the model suffers from the Kelvin–Helmholtz (KH) instability so that any given shear (even if arbitrarily small) between the layers makes short waves unstable. Because a jump in tangential velocity is induced when the interface is deformed, the applicability of the model to describe the dynamics of internal waves is expected to remain rather limited. To overcome this major difficulty, the model is written in terms of the horizontal velocities at the bottom and the interface, instead of the depth-averaged velocities, which makes the system linearly stable for perturbations of arbitrary wavelengths as long as the shear does not exceed a certain critical value.  相似文献   

16.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

17.
We study the existence and stability of standing waves for the periodic cubic nonlinear Schrödinger equation with a point defect determined by the periodic Dirac distribution at the origin. We show that this model admits a smooth curve of periodic‐peak standing wave solutions with a profile determined by the Jacobi elliptic function of cnoidal type. Via a perturbation method and continuation argument, we obtain that in the repulsive defect, the cnoidal‐peak standing wave solutions are unstable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself. Global well‐posedness is verified for the Cauchy problem in $H^1_{per}$ .  相似文献   

18.
We propose a shallow water model that combines the dispersion relation of water waves and Boussinesq equations, and that extends the Whitham equation to permit bidirectional propagation. We show that its sufficiently small and periodic traveling wave is spectrally unstable to long wavelength perturbations if the wave number is greater than a critical value, like the Benjamin‐Feir instability of a Stokes wave. We verify that the associated linear operator possesses infinitely many collisions of purely imaginary eigenvalues, but they do not contribute to instability to the leading order in the amplitude parameter. We discuss the effects of surface tension. The results agree with those from a formal asymptotic expansion and a numerical computation for the physical problem.  相似文献   

19.
In this paper, we establish the orbital stability of a class of spatially periodic wave train solutions to multidimensional nonlinear Klein–Gordon equations with periodic potential. We show that the orbit generated by the one‐dimensional wave train is stable under the flow of the multidimensional equation under perturbations which are, on one hand, coperiodic with respect to the translation or Galilean variable of propagation, and, on the other hand, periodic (but not necessarily coperiodic) with respect to the transverse directions. That is, we show their transverse orbital stability. The class of periodic wave trains under consideration is the family of subluminal rotational waves, which are periodic in the momentum but unbounded in their position.  相似文献   

20.
Bistable reaction–diffusion equations are known to admit one-dimensional travelling waves which are globally stable to one-dimensional perturbations—Fife and McLeod [7]. These planar waves are also stable to two-dimensional perturbations—Xin [30], Levermore-Xin [19], Kapitula [16]—provided that these perturbations decay, in the direction transverse to the wave, in an integrable fashion. In this paper, we first prove that this result breaks down when the integrability condition is removed, and we exhibit a large-time dynamics similar to that of the heat equation. We then apply this result to the study of the large-time behaviour of conical-shaped fronts in the plane, and exhibit cases where the dynamics is given by that of two advection–diffusion equations.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号