首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detailed mechanism for the diboration of aldehydes catalyzed by (NHC)Cu(boryl) complexes (NHC = N-heterocyclic carbene) was studied with the aid of DFT by calculating the relevant intermediates and transition states. The results show that the catalyzed diboration occurs through aldehyde insertion into Cu-B to give a Cu-O-C(boryl) species followed by sigma-bond metathesis with a diboron reagent. It is the "electron-richness", that is, the nucleophilicity of the Cu-boryl bond, which gives rise to a small insertion barrier and determines the direction of insertion. The results of our calculations also explain the formation of the product, observed experimentally, from the stoichiometric reaction of (IPr)Cu-Bpin (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with mesitylaldehyde. In the absence of a diboron reagent, the insertion intermediate having a Cu-O-C(boryl) linkage isomerizes to the thermodynamically preferred Cu-C-O(boryl) isomer via a boryl migration to the metal-bonded oxygen through an S(E)2-like transition state. We have also studied the catalyzed diboration of 2-pyridinecarboxaldehyde, which gives the unexpected reductive coupling product 1,2-di-2-pyridyl-1,2-bis(pinacolboroxy)ethane. The insertion intermediate, which contains a coordinated pyridyl group, isomerizes easily to a 1,2-dihydropyridine form, preventing its metathesis with a diboron reagent to give the expected diboration product as observed for other aldehyde substrates.  相似文献   

2.
Density functional theory calculations have been employed to investigate the role of structural properties of copper phenanthroline complexes for DNA-cleavage activity. Structural changes imposed on the coordination geometries of Cu(phen)(2)(+,2+) (phen = 1,10-phenanthroline) linked by a serinol bridge (abbreviated as Clip) were studied, as well as their energetic profiles. Our calculations show that structures of these copper complexes (in this work named as clipped complexes) strongly depend on the position of the link, rather than on the copper oxidation state. Ionization energies slightly differ among the three selected complexes, while inner-sphere reorganization energies more markedly depend on the serinol link. However, the relative rates of the redox reaction of Cu(phen)(2), Cu(2-Clip-phen), and Cu(3-Clip-phen) were found not to correlate with their relative DNA-cleavage activity experimentally observed. Thus, the serinol link mainly affects the structural properties of copper phenanthroline complexes rather than their electronic properties. Docking simulations of clipped and nonclipped Cu(I) phenanthroline complexes on a DNA 16mer, d[CGCTCAACTGTGATAC](2), were finally performed to assess how different structural properties could affect the formation of DNA adducts. This analysis revealed that the most stable adducts of Cu(phen)(2+) and Cu(3-Clip-phen)(+) with DNA bind in the minor groove, whereas Cu(2-Clip-phen)(+) binds preferentially into the major groove.  相似文献   

3.
Density functional theory calculations were done to examine the potential energy surfaces of Ni(I)-catalyzed Negishi alkyl-alkyl cross-coupling reactions by using propyl iodide and isopropyl iodide as model alkyl electrophiles and CH 3ZnI as a model alkyl nucleophile. A four-step catalytic cycle involving iodine transfer, radical addition, reductive elimination, and transmetalation steps were characterized structurally and energetically. The reaction mechanism for this catalytic cycle appears feasible based on the calculated free energy profiles for the reactions. The iodine transfer step is the rate-determining step for the Ni(tpy)-CH 3 (tpy = 2,2'6',2'-terpyridine) reactions with alkyl iodides. For secondary alkyl electrophiles, the oxidative addition intermediate, Ni(III), prefers to undergo decomposition over reductive elimination, whereas for the primary alkyl electrophiles, Ni(III) prefers to undergo reductive elimination over decomposition based on comparison of the relative reaction rates for these two types of steps. In addition, thermodynamic data were employed to help explain why the yield of the coupled product is very low from the Ni(II)-alkyl halide reactions with organozinc reagents.  相似文献   

4.
沈玉全 《化学学报》1986,44(3):244-249
在大于300nm光波照射下,氯化亚铜或乙酰丙酮基铜(I)等低价铜配合物可以有效地催化中大环环状烯烃的顺、反异构化反应,对在大于250nm光波照射下,顺,顺-1,5-环辛二烯分子内环加成形成三环[3.3.0.0^2^.^6]-辛烷的反应机制,进行了讨论。  相似文献   

5.
Binuclear rhenium(I) complexes with 1,2-bis(4,4'-methyl-[2,2']bipyridyl)-ethane and 1,2-bis(4,4'-methyl-[2,2']bipyridyl)-dodecane as bridging ligands and their mononuclear analogues have been synthesized and characterized by their spectroscopic and electrochemical properties. First reduction potentials and luminescence properties as well as the reductive quenching of the emissive state with TEOA were not affected by the alkyl linker. By means of a detailed comparison of the photocatalytic CO(2) reductions of the monometallic and the bimetallic complexes a great beneficial effect on the activity depending on the proximity of the centres was found. In high dilution the overall kinetics in the CO(2) photoreduction of mononuclear complexes are clearly monometallic. If the proximity of the centres is adjusted according to the lifetime of the OER (one electron reduced species) the photocatalytic activity is greatly improved showing a clear bimetallic mechanism. In the binuclear rhenium complexes, both the facile generation of a free coordination site and binuclear interactions for effective two electron transfer can be realized.  相似文献   

6.
7.
The reaction of p-substituted benzyl halides ((Y)BnX; X = Cl, Br, and I; Y = p-substituent, OMe, t-Bu, Me, H, F, Cl, and NO(2)) and copper(I) complexes supported by a series of (2-pyridyl)alkylamine ligands has been investigated to shed light on the mechanism of copper(I) complex mediated carbon-halogen bond activation, including ligand effects on the redox reactivity of copper(I) complexes which are relevant to the chemistry. For both the tridentate ligand (Phe)L(Pym2) [N,N-bis(2-pyridylmethyl)-2-phenylethylamine] and tetradentate ligand TMPA [tris(2-pyridylmethyl)amine] complexes, the C-C coupling reaction of benzyl halides proceeded smoothly to give corresponding 1,2-diphenylethane derivatives and copper(II)-halide complex products. Kinetic analysis revealed that the reaction obeys second-order kinetics both on the copper complex and the substrate; rate = k[Cu](2)[(Y)BnX](2). A reaction mechanism involving a dinuclear copper(III)-halide organometallic intermediate is proposed, on the basis of the kinetic results, including observed electronic effects of p-substituents (Hammett plot) and the rate dependence on the BDE (bond dissociation energy) of the C-X bond, as well as the ligand effects.  相似文献   

8.
Four kinds of copper(I)-phenanthroline complexes ([CuI(phen)2]Cl, [CuI(phen)Cl]2, [CuI(phen)2]BF4, and CuI(phen)PPh3Cl) were prepared and used as catalysts for amination and amidation of aryl iodide to investigate the influence on the yields of products due to differences of the structures. These complexes were found to work as catalysts on these reactions and showed that the differences of structures of copper(I) complexes significantly influenced the yield of aryl-nitrogen bond forming processes.  相似文献   

9.
Density functional theory (DFT) calculations have been performed on the nitrogenase cofactor, FeMoco. Issues that have been addressed concern the nature of M-M interactions and the identity and origin of the central light atom, revealed in a recent crystallographic study of the FeMo protein of nitrogenase (Einsle, O.; et al. Science 2002, 297, 871). Introduction of Se in place of the S atoms in the cofactor and energy minimization results in an optimized structure very similar to that in the native enzyme. The nearly identical, short, lengths of the Fe-Fe distances in the Se and S analogues are interpreted in terms of M-M weak bonding interactions. DFT calculations with O or N as the central atoms in the FeMoco marginally support the assignment of the central atom as N rather than O. The assumption was made that the central atom is the N atom, and steps of a catalytic cycle were calculated starting with either of two possible states for the cofactor and maintaining the same charge throughout (by addition of equal numbers of H(+) and e(-)) between steps. The states were [(Cl)Fe(II)(6)Fe(III)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)](2-), [I-N-3H](2-), and [(Cl)Fe(II)(4)Fe(III)(3)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)], [I-N-3H](0) (Gl = deprotonated glycol; Im = imidazole). These are the triply protonated ENDOR/ESEEM [I-N](5-) and M?ssbauer [I-N](3-) models, respectively. The proposed mechanism explores the possibilities that (a) redox-induced distortions facilitate insertion of N(2) and derivative substrates into the Fe(6) central unit of the cofactor, (b) the central atom in the cofactor is an exchangeable nitrogen, and (c) the individual steps are related by H(+)/e(-) additions (and reduction of substrate) or aquation/dehydration (and distortion of the Fe(6) center). The Delta E's associated with the individual steps of the proposed mechanism are small and either positive or negative. The largest positive Delta E is +121 kJ/mol. The largest negative Delta E of -333 kJ/mol is for the FeMoco with a N(3-) in the center (the isolated form) and an intermediate in the proposed mechanism.  相似文献   

10.
Sparteine was found to be an efficient ligand because when complexed with copper(I) halide it generated a homogeneous catalyst for the atom transfer radical polymerization of styrene or methyl methacrylate, which was initiated by (1-bromoethyl)benzene in the former case and by p-toluenesulfonyl chloride in the latter. The plots of ln([M]0/[M]) versus time and molecular weight versus monomer conversion exhibited linear dependencies, which indicated that the concentration of the living centers throughout polymerization was constant. The polydispersities of polystyrene and poly(methyl methacrylate) in both the bulk and solution polymerizations were quite low. An induction time was observed during the bulk polymerization of styrene; however, it was absent during the solution polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4191–4197, 1999  相似文献   

11.
12.
The reaction mechanism of photocatalytic CO2 reduction using rhenium(I) complexes has been investigated by means of a detailed comparison of the photocatalyses of three rhenium(I) complexes, fac-[Re(bpy)(CO)3L] (L = SCN- (1-NCS), Cl- (1-Cl), and CN- (1-CN)). The corresponding one-electron-reduced species (OER) of the complexes play two important roles in the reaction: (a) capturing CO2 after loss of the monodentate ligand (L) and (b) donation of the second electron to CO2 by another OER without loss of L. In the case of 1-NCS, the corresponding OER has both of the capabilities in the photocatalytic reaction, resulting in more efficient CO formation (with a quantum yield of 0.30) than that of 1-Cl (quantum yield of 0.16), for which OER species have too short a lifetime to accumulate during the photocatalytic reaction. On the other hand, 1-CN showed no photocatalytic ability, because the corresponding OER species does not dissociate the CN- ligand. Based on this mechanistic information, the most efficient photocatalytic system was successfully developed using a mixed system with fac-[Re(bpy)(CO)3(CH3CN)]+ and fac-[Re{4,4'-(MeO)2bpy}(CO)3{P(OEt)3}]+, for which the optimized quantum yield for CO formation was 0.59.  相似文献   

13.
By applying the hybrid density functional method B3LYP and a flexible all-electron basis set, structures and energies of reactive intermediates derived from the 1-butyne complex of Co2(CO), (1) were calculated. In particular, the geometry, electronic distribution, and configurational stability of the cationic, radical, and anionic Co2(CO)6-complexed propargylic species were studied. The calculations revealed that the configurational barrier, that is, the racemization barrier for the antarafacial migration of the CHCH3 group, is low (7.6 kcalmol(-1)) for the radical and is similar to the experimental value for the corresponding cation (ca. 10 kcalmol(-1)). However, a high racemization barrier (23.7 kcalmol(-1)) for the anionic intermediate suggests the possibility of stereospecific reactions involving Co2(CO)6-complexed propargylic anions.  相似文献   

14.
Long  Bing-Fan  Qin  Gui-Fang  Huang  Qin  Xiong  Ting  Mi  Yan  Hu  Fei-Long  Yin  Xian-Hong 《Journal of the Iranian Chemical Society》2019,16(12):2639-2646

An efficient protocol for C–C coupling has been developed using three iodo-bridged copper(I) complexes as catalysts. Complexes [CuI(bpy)]2 (1), [CuI(phen)]2·DMF (2), and [CuI(Mephen)]2 (3) were successfully synthesized via solvothermal method (bpy = 2,2′-dipyridyl, phen = 1,10-phenanthroline, and Mephen = 2,9-dimethylphenanthroline). The self-coupling reaction of phenylboronic acid was selected as a model reaction to evaluate the catalytic property of the complexes. Moreover, this method tolerates various substituents on the arylboronic acids such as halogens, carbonyls, and nitro groups. It shows that the iodo-bridged Cu(I) center serves as the active site to activate molecular oxygen during the catalytic process. The result illustrates that these complexes were found to be excellent catalysts for self-coupling of arylboronic acids under mild conditions.

  相似文献   

15.
本文采用BHandHLYP和MPWB1K方法结合6-31+G(d,p)基组,对臭氧与丁基乙烯基醚三种同分异构体(n-Bve、i-Bve和t-Bve)的反应机理进行了研究,优化了反应势能面上各驻点的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.结果表明,在臭氧与丁基乙烯基醚反应中,随着丁基基团空间位阻的变化,生成OH自由基的几率发生改变.臭氧与丁基乙烯基醚之间具有较高的反应活性,二者反应很容易生成较稳定的环合中间体,且为放热反应.其中臭氧化异丁基乙烯基醚的活化能最高,臭氧化正丁基乙烯基醚的活化能最低,理论计算得到的反应势垒与相应的实验值相吻合.  相似文献   

16.
The stereoselective addition of aryl- and alkylacetylene derivatives to imines was studied. The reaction is catalyzed by copper complexes of enantiomerically pure bisimines, readily prepared in very high yields from the commercially available binaphthyl diamine. A very simple experimental procedure allowed to obtain at room temperature optically active propargylamines in high yields and enantioselectivity. Interestingly, bisimine/copper(I) complexes were able to promote the direct, enantioselective, catalytic addition to imines of alkylacetylenes. The effects of catalyst loading and other reaction parameters on the stereochemical outcome of the transformation were investigated. The extremely convenient methodology, the mild reaction conditions, and the possibility of a modular approach for developing new and more efficient bisimine-based chiral ligands make the present methodology very attractive.  相似文献   

17.
《Comptes Rendus Chimie》2008,11(8):926-931
[CpFeII(CO)2(thf)](BF4) may be considered as a bio-inspired model of hydrogenases. Its electrocatalytic properties for the reduction of trichloroacetic acid into dihydrogen are presented. A catalytic mechanism is proposed. This catalyst exhibits interesting properties, in particular low overvoltage (350 mV) for H2 evolution, but it is inactivated through dimerization. Comparison with [CpFe(CO)2]2 is provided.  相似文献   

18.
Electrocatalytic reduction of CO(2) by [Ru(tpy)(bpy)(solvent)](2+) (tpy = 2,2':6',2'-terpyridine, bpy = 2,2'-bipyridine) and its structural analogs is initiated by sequential 1e(-) reductions at the tpy and bpy ligands followed by rate limiting CO(2) addition to give a metallocarboxylate intermediate. It undergoes further reduction and loss of CO.  相似文献   

19.
We report density functional theory geometry optimizations at the B3LYP/6-311G(d,p) level of theory for the title reagent. Four stationary points on the molecular potential energy surface were located and characterized. Three of these stationary points are energy minima, one a saddle point. The minima correspond to the conventional Ph3PBr2 (three-fold Br-P-Br axis with twisted phenyl rings), the ion-pair [Ph3PBr]+Br- and a four-coordinated Ph3PBr2 spoke structure that can best be described as charge transfer on account of the substantial charge transfer from the Ph3P fragment to Br2 (as determined by a standard Mulliken population analysis and other considerations). The particular saddle point found corresponds to a three-fold Br-P-Br structure with coplanar phenyl rings. Single point B3LYP/6-311+g(3d,2p) calculations were done at the stationary point geometries in order to investigate possible deficiencies in the basis set. Solvent effects for the three solvents water, dichloroethane and cyclohexane were modelled using the self consistent reaction field Onsager method at the single point B3LYP/6-311+g(3d,2p) level of theory. In the gas phase, the charge transfer complex is the most stable of the four; in solution it is the least stable.  相似文献   

20.
利用密度泛函理论,研究了焦炭催化作用下CO还原NO的化学反应机理,优化得到了均相反应路径以及在Zigzag和Armchair型焦炭表面上的异相反应路径中所有驻点的几何构型与能量,并对三条反应路径进行了动力学分析。结果表明,均相NO还原反应的活化能为254.06 kJ/mol,而Zigzag型与Armchair型焦炭表面NO异相还原反应的活化能分别为86.94与52.16 kJ/mol,说明焦炭在NO还原反应中能够起到催化作用。在焦炭表面进行的CO还原NO的反应路径经历N2形成、N2释放及两步CO2释放四个阶段,最终生成一个N2分子与两个CO2分子。此外,通过对比不同路径下异相反应的能量变化与动力学参数可知,焦炭表面结构对NO还原反应特性存在较大影响;与Zigzag型焦炭表面相比,基于Armchair型焦炭表面的NO还原反应决速步能垒值更低且反应速率更快,表明在Armchair型焦炭表面上的NO还原反应更易进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号