首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation of B16 pigmented melanoma subcutaneously transplanted in C57 mice with a single 650 mj pulse (10 ns) of 1064 nm light from a Q-switched Nd: YAG laser caused instantaneous bleaching of the pigmented tissue. Visual and histological examination of the resulting gray-colored tumor revealed the breakdown of melanosomes with no detectable alteration of the normal and tumor-overlying skin. Histological examination of the irradiated tumor showed some degree of vascular damage; the depth of the photodamage was not affected by the successive delivery of three consecutive light pulses. The bleached tumor grew at a modestly slower rate but the high-peak-power (HPP) laser treatment did not affect the tumor concentration of a photodynamic sensitizer Si(IV)-naphthalocyanine (isoBO-SiNc) intravenously injected 24 h before Nd : YAG irradiation. Treatment of the B16 pigmented melanoma by photodynamic therapy (PDT: 1 mg/kg isoBO-SiNc, 300 mW/cm2, 520 J/cm2) from a 774 nm diode laser immediately after the 1064 nm irradiation resulted in a 16 day delay of tumor regrowth, which was markedly longer than the delay (ca 6 days) obtained after PDT under identical conditions without the preirradia-tion. Thus, pretreatment of pigmented tumors with HPP 1064 nm light appears to enhance their susceptibility to conventional PDT. The tumor response was further enhanced by repeating the combined HPP/PDT treatment at an interval of 10 days (regrowth delay: 27 days), as well as by applying hyperthermia immediately after HPP/PDT (regrowth delay: ca 34 days).  相似文献   

2.
Abstract The use of sodium pentobarbital anesthesia 50 jig gm−1 during localized photodynamic therapy (PDT) was examined in C57BL/6 mice transplanted with the pigmented B-16 melanoma. A 10 mg kg−1 i.p. injection of Photofrin II was administered 24 h prior to light exposure (630 nm, 150 mW, cm−2, 300-500 J cm−2). Separate groups of mice were utilized to monitor tumour temperature and PDT tumor response. Core tumor temperatures decreased by approx. 10oC following sodium pentobarbital administration. Tumor responses were determined by documenting the percentage of treated animals without tumor recurrences for a period of 50 days following PDT. Superior PDT induced tumor responses were obtained in control (non-anesthetized) mice following light doses of 400 and 500 J cm−2. The results of this study indicate that sodium pentobarbital can induce a protective effect on B-16 melanomas treated with PDT.  相似文献   

3.
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.  相似文献   

4.
In order to apply photodynamic therapy (PDT) to pigmented melanoma, the efficacy of PDT mediated by pheophorbide alpha from silkworm excreta (SPbalpha) and commercial Photofrin against B16F10 melanoma was comparatively studied from the in vivo assay using C57BL/6J mice. From in vitro PDT assay, the proliferation of B16F10 cells treated with SPbalpha (more than 0.5 microg/ml) and light illumination (1.2 J/cm2) were significantly inhibited with the necrotic response. This indicated that the photocytotoxicity of SPbalpha (665 nm) was not influenced by melanin from melanoma. From the assessment of the in vivo photosensitizing activity, the tumor growth was further delayed in groups treated with SPbalpha/PDT compared to that treated with Photofrin /PDT. The survival rate of tumor bearing mice treated with SPbalpha/PDT was closely associated with its photosensitizing effect. In addition, the photosensitizing effect of SPbalpha/PDT showed a dose dependent tendency in light illumination. These results demonstrated that B16F10 melanoma cells were significantly photosensitized by SPbalpha/PDT, regardless of the influence of melanin from melanoma, and SPbalpha/PDT at very low drug dose (1 mg/kg) and light dose (1.2 J/cm2) showed the photosensitizing efficacy surpassing Photofrin against B16F10 melanoma in mice system.  相似文献   

5.
Photodynamic dose is defined as the area under the curve of sensitizer level plotted as a function of light dose. This is a photochemical definition of dose. We will show that this definition is useful in predicting photobiological response. The photodestruction of sensitizer during photodynamic therapy is shown to result in an upper limit on the photodynamic dose which can be delivered by an unlimited light dose. This limit results in the opportunity to make total photodynamic dose uniform to considerable depths (one to two centimeters). The existence of thresholds for permanent tissue damage allows protection of normal tissue from the large light doses required to achieve this limiting dose deep in the tissue. Higher sensitizer levels in the tumor permit tumor destruction while the normal tissues are protected. A clinical trial to determine the proper level of injected dose necessary for these results is required. This theory of photodynamic therapy (PDT) dosimetry is tested in the DBA-SMT experimental mouse tumor system. Combinations of drug and light which are not reciprocal but are nearly equal by this theory are shown to give equivalent tumor control at seven days post treatment. Reciprocal combinations of drug and light fail to give equivalent results when they ae selected using the theory to choose a combination where reciprocity should fail.  相似文献   

6.
In this paper, a self‐delivery chimeric peptide PpIX‐PEG8‐KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self‐assembly into nanoparticles (designated as PPMA), this self‐delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti‐tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti‐tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti‐tumor immune response. This self‐delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.  相似文献   

7.
Abstract— The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (<1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.  相似文献   

8.
Photodynamic therapy removes unwanted or harmful cells by overproduction of reactive oxygen species (ROS). Fractionated light delivery in photodynamic therapy may enhance the photodynamic effect in tumor areas with insufficient blood supply by enabling the reoxygenation of the treated area. This study addresses the outcome of fractionated irradiation in an in vitro photodynamic treatment (PDT) system, where deoxygenation can be neglected. Our results show that fractionated irradiation with light/dark intervals of 45/60 s decreases ROS production and cytotoxicity of PDT. This effect can be reversed by addition of 1,3-bis-(2-chlorethyl)-1-nitrosurea (BCNU), an inhibitor of the glutathione reductase. We suggest that the dark intervals during irradiation allow the glutathione reductase to regenerate reduced glutathione (GSH), thereby rendering cells less susceptible to ROS produced by PDT compared with continuous irradiation. Our results could be of particular clinical importance for photodynamic therapy applied to well-oxygenated tumors.  相似文献   

9.
Abstract— The therapeutic effect of photodynamic therapy (PDT: photodynamic sensitizer + light) is partly due to vascular damage. This report describes a new vascular photodamage assay for PDT agents and a validation of the assay. The method described here quantitates changes in tissue blood perfusion based on the relative amount of injected fluorescein dye in treated and untreated tissues. A specially designed fluorometer uses chopped monochromatic light from an argon laser as a source for exciting fluorescein fluorescence. The fluorescent light emitted from the tissue is collected by a six element fiberoptic array, filtered and delivered to a photodiode detector coupled to a phase-locked amplifier for conversion to a voltage signal for recording. This arrangement permits a rather simple, inexpensive construction and allows for the simultaneous use of the argon laser by other investigators.
The routine assay for characterizing a specific photosensitizer at a standard dose consists of the sequential allocation of eight mice to a set of different light doses designed to span the dose-response range of fluorescein fluorescence exclusion (measured 8–10 min after fluorescein injection). The assay validation experiment used an anionic photosensitizer, 2-[l-hexyloxyethyl]-2-devinyl pyropheophorbide-a at a dose of 0.4 μmol/kg. The parameter estimates (n = 34 mice) from fitting the standard Hill dose-response model to the data were: median fluorescence exclusion light dose FE50= 275 ± 8.3 J/cm2 and Hill sigmoidicity parameter m =−3.66 ± 0.28. Subsets of the full data set randomly selected to simulate a standard eight mice experiment yielded similar parameter estimates. The new assay provides reliable estimates of PDT vascular damage with a frugal sequential experimental design.  相似文献   

10.
The mechanism of tissue damage from photodynamic therapy (PDT) may be cellular, vascular or both, depending on the photosensitising agent and the treatment conditions. Well established photosensitisers like porfimer sodium have an optimum drug light interval of two days and may cause skin photosensitivity lasting several weeks. ATX-S10Na(II) is a new photosensitiser that remains largely in the vasculature after systemic administration and clears from the body within a few hours. The present study looks at the factors controlling the extent of PDT necrosis using ATX-S10Na(II) and correlates these with changes in the circulation after PDT. Normal Wistar rats were sensitised with ATX-S10Na(II), 2 mg/kg. At laparotomy, a laser fibre was positioned just touching the colonic mucosa and 50 J light at 670 nm delivered varying the drug light interval (0.5-24 h) and light delivery regime (100 mW continuous, 20 mW continuous or 100 mW in five fractions). Some animals were killed at three days to document the area of necrosis, others received fluorescein shortly prior to death (from a few minutes to three days after PDT) to outline the zone of PDT induced vascular shutdown. Maximum necrosis was seen with the shortest drug light interval (0.5 h), with no effect by 6 h. Fractionating the light or lowering the power did not increase the necrosis. The area of fluorescein exclusion increased over the first 2 h after PDT (in contrast to the re-perfusion seen with other photosensitisers) and correlated with the area of necrosis. PDT with ATX-S10Na(II) is most effective with a drug light interval of less than one hour. It induces irreversible vascular shutdown that extends after completion of light delivery and which is largely independent of the light delivery regime.  相似文献   

11.
The aim of this study is to modify the chick chorioallantoic membrane (CAM) model into a whole-animal tumor model for photodynamic therapy (PDT). By using intraperitoneal (i.p.) photosensitizer injection of the chick embryo, use of the CAM for PDT has been extended to include systemic delivery as well as topical application of photosensitizers. The model has been tested for its capability to mimic an animal tumor model and to serve for PDT studies by measuring drug fluorescence and PDT-induced effects. Three second-generation photosensitizers have been tested for their ability to produce photodynamic response in the chick embryo/CAM system when delivered by i.p. injection: 5-aminolevulinic acid (ALA), benzoporphyrin derivative monoacid ring A (BPD-MA), and Lutetium-texaphyrin (Lu-Tex). Exposure of the CAM vasculature to the appropriate laser light results in light-dose-dependent vascular damage with all three compounds. Localization of ALA following i.p. injections in embryos, whose CAMs have been implanted with rat ovarian cancer cells to produce nodules, is determined in real time by fluorescence of the photoactive metabolite protoporphyrin IX (PpIX). Dose-dependent fluorescence in the normal CAM vasculature and the tumor implants confirms the uptake of ALA from the peritoneum, systemic circulation of the drug, and its conversion to PpIX.  相似文献   

12.
Abstract— Vascular stasis and tissue ischemia are known to cause tumor cell death in several experimental models after photodynamic therapy (PDT); however, the mechanisms leading to this damage remain unclear. Because previous studies indicated that thromboxane release is implicated in vessel damage, we further examined the role of throm-boxane in PDT. Rats bearing chondrosarcoma were injected with 25 mg/kg Photofrin® (intravenously) 24 h before treatment. Light (135 J/cm 2 , 630 nm) was delivered to thc tumor area after injection of one of the following inhibitors: (1) R68070: a thromboxane synthetase inhibitor; (2) SQ-29548: a thromboxane receptor antagonist; and (3) Flunarizine: an inhibitor of platelet shape change. Systemic thromboxane levels were determined. Vessel constriction and leakage were evaluated by intravital microscopy. Tumor response was assessed after treatment. Thromboxane levels were decreased more than 50% with SQ-29548 as compared to controls. Thromboxane levels in animals given R68070 and Flunarizine remained at baseline levels. SQ-29548 and R68070 reduced vessel constriction compared to controls, while Flunarizine totally prevented vessel constriction. R68070 and SQ-29548 inhibited vessel permeability compared to PDT controls; Flunarizine did not. Animals given these inhibitors showed markedly reduced tumor cure. These results indicate that the release of thromboxane is linked to the vascular response in PDT.  相似文献   

13.
SITES OF PHOTODAMAGE in vivo and in vitro BY A CATIONIC PORPHYRIN   总被引:2,自引:1,他引:2  
Abstract— Localization and photodynamic efficacy of a monocationic porphyrin (MCP) were assessed using murine leukemia cells in culture. This sensitizer localized at surface membrane loci and catalyzed selective photodamage to membrane structures. Although both cationic and hydrophobic, this porphyrin was not recognized by the multidrug transporter, which excludes many cationic agents from cells that express multidrug resistance. Photodynamic studies with the murine radiation-induced fibrosarcoma tumor model indicated moderate photosensitization of neoplastic lesions in vivo at 3 h, but not at 24 h after sensitizer administration. Pharmacokinetic studies indicate that plasma levels, not tissue levels were the major determinant of photodynamic therapy (PDT) response. Consistent with this observation, vascular damage and disturbances of tissue perfusion followed PDT. These effects were more pronounced in tumor-bearing skin than in normal skin. The therapeutic response to MCP appeared to be related mainly to secondary, probably vascular, effects.  相似文献   

14.
Photodynamic Therapy of 9L Gliosarcoma with Liposome-Delivered Photofrin   总被引:5,自引:1,他引:5  
Abstract— The effect of Photofrin encapsulated in a liposome delivery vehicle for photodynamic therapy (PDT) of the 9L gliosarcoma and normal rat brain was tested. We hypothesized that the liposome vehicle enhances therapeutic efficacy, possibly by increasing tumor tissue concentration of Photofrin. Male Fisher rats bearing a 9L gliosarcoma were treated 16 days after intracerebral tumor implantation with either Photofrin in dextrose (n = 5) or Photofrin in liposome (n = 6). Nontumor-bearing animals were treated with Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle. Tissue concentrations of Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle were measured in tumor, brain adjacent to tumor and in normal brain tissue. Photofrin was administered (intraperitoneally) at a dose of 12.5 mg/kg and PDT (17 J/cm2 of 632 nm light at 100 mW/cm2) was performed 24 h after Photofrin administration. Brains were removed 24 h after PDT and stained with hematoxylin and eosin for analysis of cellular damage. The PDT using Photofrin in the liposome vehicle caused significantly more damage to the tumor ( P < 0.001) than did PDT with Photofrin in dextrose. The PDT of tumor with Photofrin delivered in liposomes caused a 22% volume of cellular necrosis, while PDT of tumor with Photofrin delivered in dextrose caused only scattered cellular damage. Photofrin concentration in tumors was significantly higher ( P = 0.021) using liposome (33.8 ± 18.9 μg/g) compared to dextrose delivery (5.5 ± 1.5 μg/g). Normal brain was affected similarly in both groups, with only scattered cellular necrosis. Our data suggest that the liposome vehicle enhances the therapeutic efficacy of PDT treatment of 9L tumors.  相似文献   

15.
The possibility of extending photodynamic therapy to the treatment of highly pigmented neoplastic lesions was tested by using Si(IV)-naphthalocyanine (SiNc) as a tumor-localizing agent. Si(IV)-naphthalocyanine displays intense absorbance at 776 nm (ɛ= 5 × 105 M−1 cm−1), where melanin absorption becomes weaker. As an experimental model we selected B16 pigmented melanoma subcutaneously transplanted to C57BL mice. Upon injection of 0.5 or 1 mg kg−1 of liposome-incorporated SiNc, maximal accumulation of the photosensitizer in the tumor was observed at 24 h with recoveries of 0.35 and 0.57 μg g−1, respectively. However, the tumor targeting by SiNc shows essentially no selectivity, since the photosensitizer concentrations in the skin (peritumoral tissue) were very similar to those found in the tumor at all postinjection times examined by us. Irradiation of SiNc-loaded melanoma with 776 nm light from a diode laser at 24 h postinjection induces tumor necrosis and delay of tumor growth. The effect appears to be of purely photochemical nature at dose rates up to 260 mW cm−2; at higher dose rates, thermal effects are likely to become important.  相似文献   

16.
The relationship between levels of in vivo accumulated photosensitizer (Photofrin II), photodynamic cell inactivation upon in vitro or in vivo illumination, and changing tumor oxygenation was studied in the radiation-induced fibrosarcoma (RIF) mouse tumor model. In vivo porphyrin uptake by tumor cells was assessed by using 14C-labeled photosensitizer, and found to be linear with injected photosensitizer dose over a range of 10 to 100 mg/kg. Cellular photosensitivity upon exposure in vitro to 630 nm light also varied linearly with in vivo accumulated photosensitizer levels in the range of 25 to 100 mg/kg injected Photofrin II, but was reduced at 10 mg/kg. Insignificant increases in direct photodynamic cell inactivation were observed following in vivo light exposure (135 J/cm2, 630 nm) with increasing cellular porphyrin levels. These data were inconsistent with expected results based on in vitro studies. Assessment of vascular occlusion and hypoxic cell fractions following photodynamic tumor treatment showed the development of significant tumor hypoxia, particularly at 50 and 100 mg/kg of Photofrin II, following very brief light exposures (1 min, 4.5 J/cm2). The mean hyupoxic cell fractions of 25 to 30% in these tumors corresponded closely with the surviving cell fractions found after tumor treatment in vivo, indicating that these hypoxic cells had been protected from PDT damage. Inoculation of tumor cells, isolated from tumors after porphyrin exposure, into porphyrin-free hosts, followed by in vivo external light treatment, resulted in tumor control in the absence of vascular tumor bed effects at high photosensitizer doses only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

18.
Hematoporphyrin monomethyl ether (HMME) is a novel and promising second-generation porphyrin-related photosensitizer for photodynamic therapy (PDT). To study the effects of HMME PDT on choroidal neovascularization (CNV) in rats, the PDT was performed 20 min after HMME bolus injection, which was investigated prior to the PDT by fluorescence microscopy with laser-induced CNV, and delivered at an irradiance of 400, 600 and 1000 mW cm−2 corresponding to a fluence of 36, 54, 90 J cm−2 in PDT plan I (15 mg kg−1 HMME). In PDT plan II (30 mg kg−1 HMME), the laser had a constant irradiance of 600 mW cm−2, which was delivered for 60, 90 or 150 s, to also achieve total energy doses of 36, 54 or 90 J cm−2. CNV closure rates assessed by fluorescein angiography and histologic damage to treated areas of choroid and retina varied as a function of the dose of HMME and of the activating light energy fluence. Endothelial cell labeled by platelet/endothelial cell adhesion molecule-1 presented treated CNV lesions that were significantly reduced in size (P < 0.01). It can be concluded that PDT using HMME can effectively occlude CNV. HMME is a potentially useful photosensitizer for the reduction in CNV size of irradiated areas.  相似文献   

19.
Abstract— Photodynamic therapy disrupts blood flow to tumors and produces tumor necrosis. These effects may be due to a localized generation of singlet oxygen. The current studies used direct observations of the rat cremaster microvasculature to examine the vascular effects of PDT. The objective of the morphological examination was to delineate the structural basis for the altered blood flow in photodynamic therapy. Dihematoporphyrin ether given 30 min or 48 h prior to the experiment was activated with green light (wavelength530–560 nm, 120 J/cm2). After the in vivo activation the tissues were prepared for electron microscopy. Light alone induced little or no change in the luminal content or vessel wall. On exposure to activating light both acute (30 min) and long term (48 h) dihematoporphyrin ether pretreated samples displayed formation of luminal aggregates, granulocyte margination and migration, and endothelial cell and smooth muscle cell damage. The latter was more pronounced in the arterioles than the venules. Perivascular changes included interstitial edema and damage to striated myocytes. Some of the alterations such as interstitial edema may be transient; however, smooth and skeletal muscle cell injury are important in normal and tumor tissue necrosis after photodynamic therapy.  相似文献   

20.
Abstract— The dependence of photodynamic therapy (PDT) on changes in drug and light doses was determined in C3H/HeJ mice bearing the RIF tumor. Measurements of tumor clonogenicity were determined 24 h after PDT over a range of drug and light doses. Representative histological samples were prepared at each of these doses. Both the drug and light dose dependence experiments showed an exponential decrease in clonogenicity after an initial shoulder region. Reciprocity of drug and light dose was established from those clonogenicity curves. Histological examination of tumors gave information concerning the localization of gross damage within tumors. Increases of light dose in PDT were shown to extend the depth of necrosis within tumors. Increases of drug dose produced enlargements in the area of necrotic spots produced by PDT  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号