首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexes of Mn2+, Cd2+, Fe3+, Pb2+, Ni2+, Co2+, Zn2+ and Cu2+ with EDTA and cyclohexane-1,2-diaminetetraacetic acid (CDTA) were separated and detected in column and ion electrokinetic chromatography with suppressed conductivity and direct UV detection, respectively. In column ion chromatography (IC) these complexes were separated on an IonPac AS4A anion-exchange column (Dionex, USA). Parameters of carrier electrolyte, which were examined in the ion electrokinetic chromatography (IEKC) mode, include polymer and sulfate concentrations. In IEKC separation selectivity of complexes with poly(diallyldimethylammonium) cation as modifier is similar as for an IonPac AS4A column both for EDTA and CDTA chelates. It was shown that the ion-exchange capacity of the electrokinetic system is more than 100-times lower than the capacity of the IC column for the same peak resolution. In comparison with column main advantages of electrokinetic version are high separation efficiency (220 000–390 000 theoretical plates) and the absence of the analyte interaction with the sorbent matrix.  相似文献   

2.
Summary An ion chromatographic method has been developed for the separation of Te (IV) and Se(IV) in hydrochloric acid mobile phases; the method has been used to determine tellurium in a high-purity non-stoichiometric semiconducting ZnCdTe-based material. Different cation-exchange columns (IonPac CS2, CS3, CS10), a mixed bed ion-exchange column (IonPac CS5), a multi-mode cation-exchange column (OmniPac PCX-500), anion-exchange columns (IonPac AS4, AS4A, AS5, AS5A, AS10, AS11) and a multi-mode anion-exchange column (OmniPac PAX-500) were evaluated for ion chromatographic separation of Se and Te and to study the chemical forms in which the analytes were eluted. The chromatographic data obtained enabled the calculation of both the sign and the chaarge of the eluting species.  相似文献   

3.
A method for the separation of acetate and formate anions by ion chromatography has been optimized under various measurement conditions (e.g. the composition of the mobile phase, and the flow rate of the eluent). For this purpose, two different analytical columns were examined: the IonPac AS14 (250 mm x 4 mm i.d.; designed mostly for the separation of inorganic anions) and the Allsep A-2 (150 mm x 4.6 mm i.d.; designed for the separation of low-molecular mass organic acids). However, nearly baseline separation of acetate and formate has been found on each column using the following conditions: (i) IonPac AS14 column and 2.0 mM Na2B4O7 solution as an eluent with a flow rate of 1.0 ml/min, or (ii) Allsep A-2 column and an eluent containing a mixture of 1.2 mM Na2CO3 plus 1.5 mM NaHCO3 with a flow rate of 1.3 ml/min. Additionally, the separation of fluoride from acetate and formate on both columns was studied. On the IonPac AS14 column it was possible to separate all three investigated anions. However, on the Allsep A-2 column, when the concentration of fluoride was comparable to, or higher than acetate, it was impossible to achieve good separation of these two anions, even using the optimized elution procedure. Therefore, the measurements of real samples were carried out with the use of IonPac AS14 column. The concentrations of acetate and formate have been determined in the air samples of the Cathedral of Cologne (Germany), after sampling the corresponding acids by passive diffusion tubes. Average concentrations of 122 and 9 microg/m(3) for acetic and formic acids were found, respectively, inside the Cathedral and in a depot with medieval stained glass panels.  相似文献   

4.
In water-based heating and cooling circuits monoethylene glycol is frequently used as an anti-freezing agent. For corrosion protection inhibitors based on nitrite, molybdate or amines are commonly added. The determination of nitrite is usually performed by ion chromatography (IC) using an IonPac AS14 analytical column for the anion separation and a suppressed conductivity detection. Local overheating in some circuits causes degradation of ethylene glycol and leads to the formation of some organic acids. Under such chemical conditions the correct quantification of nitrite becomes a more complex analytical task due to the interference of the organic acids. This problem was solved using the IonPac AS9-HC separation column. In heat transfer systems, where nitrite is not stable, molybdate can be used as an inhibitor for corrosion protection. In these cases photometric methods are recommended for monitoring the molybdate concentration. However, due to the dark brown colour and turbidity of aged glycol solutions photometric methods were not applicable. Thus the use of IC offered a reliable alternative for the determination of molybdate, also in aged glycol solutions, using IonPac AS9-HC or AS14 columns for separation.  相似文献   

5.
Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N′-bis(hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal–HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate–hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)–(III) and Mn(II)–(III) pairs demonstrated the efficiency of 40 000–400 000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(II), Fe(II) ions in reaction with HBED have been discussed.  相似文献   

6.
Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution. IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron‐containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide‐selective columns, IonPac AS11‐HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics. Among them 4‐chlorobenzene sulfonic acid, 3,5‐dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π‐π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron‐containing substituents. So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion‐exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its polymer is completely free of any π electron‐containing substituents. Finally, the effect of temperature on the retention behavior in AS20 column was studied and it was showed that the retention of nine compounds exhibited endothermic behavior.  相似文献   

7.
林立  王海波  史亚利 《色谱》2013,31(3):281-285
建立了二维离子色谱法同时测定环境水样中的碘离子、硫氰酸根离子和高氯酸根离子的方法。先采用常规阴离子色谱柱(IonPac AS16, 250 mm×4 mm)将水样中的碘离子、硫氰酸根离子和高氯酸根离子与干扰离子进行分离。样品溶液通过抑制器后,将含有碘离子、硫氰酸根离子和高氯酸根离子的淋洗液导入富集柱(MAC-200, 80 mm×0.75 mm),再通过毛细管阴离子色谱柱(IonPac AS20 Capillary, 250 mm×0.4 mm)进行分离和定量分析。方法的线性范围为0.05~100 μg/L,相关系数达到0.9999,检出限为0.02~0.05 μg/L。样品中碘离子、硫氰酸根离子和高氯酸根离子的加标回收率在85.1%~100.1%之间,回收率的相对标准偏差(RSD)(n=6)在1.7%~4.9%之间。该法试剂用量小,灵敏度比常规离子色谱提高30~40倍,同时去除了样液中的高浓度基体杂质,适用于水样中低含量碘离子、硫氰酸根离子和高氯酸根离子的检测。  相似文献   

8.
In this paper, the separation and determination of the sweetener aspartame by ion chromatography coupled with electrochemical amperometric detection is reported. Sodium saccharin, acesulfame-K and aspartame were separated using 27.5 mmol/l NaOH isocratic elution on a Dionex IonPac AS4A-SC separation column. Aspartame can be determined by integrated amperometric detection without interference from the other two sweeteners. The method can be applied to the determination of aspartame in powered tabletop, fruit juice and carbonated beverage samples, and the results obtained by integrated amperometry were in agreement with those obtained using a UV detection method. A method for determining analytes with an NH2 group by ion chromatography with integrated amperometry was developed.  相似文献   

9.
A single-column method for the simultaneous determination of common cations and transition metals in real samples is proposed in this paper. Eleven cations (copper, lithium, sodium, ammonium, potassium, cobalt, nickel, magnesium, calcium, strontium and zinc) were separated and analyzed by means of ion chromatography using an isocratic elution with 2.5 mM methane sulfonic acid and 0.8 mM oxalic acid as mobile phase, IonPac SCS1 (250 mm x 4 mm I.D.) as the separation column and non-suppressed conductor detection. Optimized analytical conditions were further validated in terms of accuracy, precision and total uncertainty and the results showed the reliability of the IC method. The relative standard deviations (RSDs) of the retention time and peak area were less than 0.04 and 1.30%, respectively. The coefficients of determination for cations ranged from 0.9988 to 1.000. The method developed was successfully applied to determination of cations in samples of beer and bottled mineral water. The spiked recoveries for the cations were 94-106%. The method was applied to beer and beverage without interferences.  相似文献   

10.
This work is an upgrade of a previously developed method (J. Chromatogr. A 884 (2000) 251] for epichlorohydrin determination by ion chromatography (IC) and conductivity detection. Here, an ion chromatography-mass spectrometry (IC-MS) coupling has been employed for the separation and the identification of products of epichlorohydrin when reacted with the nucleophilic agent SO3(2-). The high capacity column (IonPac AS11-HC) used for separation provided good resolution. This allowed evaluation of the IC behavior and mass spectrometric identification of epichlorohydrin sulfite derivatives. By using atmospheric pressure interfaces (ESI and APCI) the following species were tentatively identified: 2,3-dihydroxy-1-propanesulfonic, 2,3-epoxy-1-propanesulfonic,1,3-dihydroxy-2-propanesulfonic and 3-oxetanesulfonic acids and 2-hydroxy-1,3-propanedisulfonic acid (or its isomer 3-hydroxy-1,2-propanedisulfonic acid). The study showed that chlorine atoms are displaced from epichlorohydrin during the reaction, while mass spectrometry confirmed that none of the products formed contains chlorine atoms.  相似文献   

11.
钟志雄  李攻科 《色谱》2009,27(4):499-504
建立了离子色谱法测定海产品中磷酸盐、焦磷酸盐、偏磷酸盐和总磷的分析方法。样品经100 mmol/L NaOH溶液浸提,固相萃取柱去除有机物、阳离子、中和OH~后用于海产品中磷酸盐、焦磷酸盐和偏磷酸盐的测定;样品经干灰化法消化,固相萃取柱净化后用于总磷测定。考察了提取溶液的pH、有机物和共存离子对测定结果的影响。该方法的线性范围为0.3~60 mg/L,检出限为2.1~2.3 mg/kg,相对标准偏差为1.6%~2.6%。海鱼和虾仁样品中目标物的加标回收率为81.8%~100.0%。该方法选择性好,灵敏度高,用于实际样品测定结果令人满意。  相似文献   

12.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

13.
A suppressed ion chromatography (IC) technique has been evaluated as a chemical monitoring tool for detecting major anions (F-, Cl-, NO3- and SO4(2-)) of condensed steam in geothermal power plants. It is shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in the geothermal industry. An electrical conductivity detector (0.1 microS sensitivity) with an anion-exchange column (IonPac AS4A-SC), a micro-membrane suppressor (AMMS II), and an isocratic high-pressure pump system were successfully used for detecting low concentrations of inorganic anions. Method detection limits for the anions of interest were <0.184 mg/L. Details of the IC methodology as well as some experimental results obtained during its application for the chemical monitoring of geothermal steam pipes are also described.  相似文献   

14.
Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N′-bis(hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal–HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate–hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)–(III) and Mn(II)–(III) pairs demonstrated the efficiency of 40 000–400 000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(II), Fe(II) ions in reaction with HBED have been discussed.  相似文献   

15.
建立了高氯、高钠油田回注水中痕量无机阴、阳离子和有机酸的离子色谱分析方法。对高钠基质中痕量阳离子的测定,选用IonPac CS12A分析柱、H2SO4溶液梯度淋洗、电导检测器检测;对高氯基质中阴离子及有机酸的测定,选用对OH-具有高选择性的高容量的IonPac AS11-HC柱、KOH梯度淋洗、电导检测器检测。在优化的梯度淋洗条件下,高氯或高钠的存在不影响痕量阴离子或阳离子的测定。该方法具有良好的线性(r=0.9926~0.9990)和精密度(测定组分峰面积的相对标准偏差(n=7)在8.0%以下),回收率  相似文献   

16.
建立了一种在线基体消除的方法,采用离子色谱法测定了墨水染料中的氯和硫酸盐。样品经溶解、稀释后直接进样,在纯水的输送下依次经过DIONEX OnGuard Ⅱ P和IonPac NG1柱,在线实现了墨水样品中染料和疏水性干扰基体的去除,死时间流出的待测阴离子浓缩于阴离子交换柱IonPac AG11-HC。浓缩柱经阀切换进入离子色谱系统,以4.5 mmol/L Na2CO3-0.8 mmol/L NaHCO3作为淋洗液,流速1.2 mL/min,待测离子经IonPac AS23(4 mm×250 mm)分析柱分离,采用DIONEX DS6电导检测器检测,外标法定量。Cl-和SO2-4的线性范围分别为0.05~5.0、0.1~10.0 mg/L,相关系数分别为0.999 8和 0.999 7,加标回收率为94%~103%,相对标准偏差(n=11)小于1.0%,检出限(S/N=3)分别为0.02、0.05 mg/L。该方法用于墨水染料中氯和硫酸盐的测定,结果满意。  相似文献   

17.
The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.  相似文献   

18.
Cao H  Xiao JB 《Annali di chimica》2007,97(1-2):49-58
An Ion Chromatographic (IC) method for the determination of six organic acids and three inorganic anions in alkaline solutions was reported. Formic, acetic, propionic, oxalic, succinic, glutaric acid, F-, Cl-, and SO4(2-) were separated and determined in 33 min. The analytes were removed from Bayer liquor by using an ion-exchange resin column. The chromatographic separation was achieved with only one IonPac AS11-HC column thermostated at 30 degrees C. Organic acids and inorganic anions were detected with a suppressed conductance detector. The precision results' showed that the repeatability and reproducibility were < 2.94 and < 1.37%, respectively. The accuracy of the method was assessed by the recoveries ranging from 86.3 to 105.6%. Under optimum conditions the detection limits ranged from 0.008 to 0.053 mg/l.  相似文献   

19.
A method for determination of anions and cations in boric acid is proposed by matrix volatilization. The boric acid matrix was eliminated as trimethyl borate ester in a vapour phase matrix elimination (VPME) system using a mixture of glycerol-methanol. In this VPME system, in situ reagent purification, sample decomposition and digest evaporation were achieved in a single step. Trace anions were separated on anion-exchange column (IonPac AS17) by an isocratic elution with 15 mM sodium hydroxide and the cations on a cation-exchange column (IonPac CS12) by 20 mM hydrochloric acid as eluents. Method detection limits (3sigma) for most ions ranged from 0.3 to 8 ng/g (ppb). Recovery experiments combined with comparison of data obtained by other methods were employed to verify the accuracy of the proposed method. Application of the method to determine trace levels of anions like acetate, oxalate, sulfate, phosphate and cations such as lithium, sodium, potassium, magnesium and calcium in two highly pure grades of boric acid using ion chromatography is demonstrated.  相似文献   

20.
Quantitative determination of trace glyphosate and phosphate in waters was achieved by coupling ion chromatography (IC) separation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The separation of glyphosate and phosphate on a polymer anion-exchange column (Dionex IonPac AS16, 4.0 mm x 250 mm) was obtained by eluting them with 20 mM citric acid at 0.50 mL min(-1), and the analytes were detected directly and selectively by ICP-MS at m/z = 31. Parameters affecting their chromatographic behaviors and ICP-MS characteristics were systematically examined. Based on a 500-microL sample injection volume, the detection limits were 0.7 microgL(-1) for both glyphosate and phosphate, and the calibrations were linear up to 400 microgL(-1). Polyphosphates, aminomethylphosphonic acid (the major metabolite of glyphosate), non-polar and other polar phosphorus-containing pesticides showed different chromatographic behaviors from the analytes of interest and therefore did not interference. The determination was also interference free from the matrix anions (nitrate, nitrite, sulphate, chloride, etc.) and metallic ions. The analysis of certified reference material, drinking water, reservoir water and Newater yielded satisfactory results with spiked recoveries of 97.1-107.0% and relative standard deviations of < or = 7.4% (n = 3). Compared to other reported methods for glyphosate and phosphate, the developed IC-ICP-MS method is sensitive and simple, and does not require any chemical derivatization, sample preconcentration and mobile phase conductivity suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号