首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Fermat—Weber location problem is to find a point in n that minimizes the sum of the weighted Euclidean distances fromm given points in n . A popular iterative solution method for this problem was first introduced by Weiszfeld in 1937. In 1973 Kuhn claimed that if them given points are not collinear then for all but a denumerable number of starting points the sequence of iterates generated by Weiszfeld's scheme converges to the unique optimal solution. We demonstrate that Kuhn's convergence theorem is not always correct. We then conjecture that if this algorithm is initiated at the affine subspace spanned by them given points, the convergence is ensured for all but a denumerable number of starting points.  相似文献   

2.
We consider the 1.52-approximation algorithm of Mahdian et al. for the metric uncapacitated facility location problem. We show that their algorithm does not close the gap with the lower bound on approximability, 1.463, by providing a construction of instances for which its approximation ratio is not better than 1.494.  相似文献   

3.
In this paper we propose a new integer programming formulation for the multilevel facility location problem and a novel 3-approximation algorithm based on LP-rounding. The linear program that we use has a polynomial number of variables and constraints, thus being more efficient than the one commonly used in the approximation algorithms for these types of problems.  相似文献   

4.
This paper deals with multiobjective programming in which the objective functions are nonsymmetric distances (derived from different gauges) to the points of a fixed finite subset of n. It emphasizes the case in which the gauges are polyhedral. In this framework the following result is known: if the gauges are polyhedral, then each Pareto optimum is the solution to a Fermat—Weber problem with strictly positive coefficients. We give a new proof of this result, and we show that it is useful in finding the whole set of efficient points of a location problem with polyhedral gauges. Also, we characterize polyhedral gauges in terms of a property of their subdifferential.A simplified version of the results of this paper has been presented at the International Symposium on Infinite Dimensional Linear Programming, September 1984, Cambridge, England.  相似文献   

5.
The classical Fermat-Weber problem is to minimize the sum of the distances from a point in a plane tok given points in the plane. This problem was generalized by Witzgall ton-dimensional space and to allow for a general norm, not necessarily symmetric; he found a dual for this problem. The authors generalize this result further by proving a duality theorem which includes as special cases a great variety of choices of norms in the terms of the Fermat-Weber sum. The theorem is proved by applying a general duality theorem of Rockafellar. As applications, a dual is found for the multi-facility location problem and a nonlinear dual is obtained for a linear programming problem with a priori bounds for the variables. When the norms concerned are continuously differentiable, formulas are obtained for retrieving the solution for each primal problem from the solution of its dual.  相似文献   

6.
7.
This paper gives a new, simple, monotonically convergent, algorithm for the Fermat-Weber location problem, with extensions covering more general cost functions. Received: September 1999 / Accepted: January 2001?Published online April 12, 2001  相似文献   

8.
The central warehouse location problem revisited   总被引:1,自引:0,他引:1  
This paper is concerned with the optimal location of a centralwarehouse, given a fixed number and the locations of the localwarehouses. We investigate whether the solution determined bythe traditional model that minimizes total transportation costdiffers from the one determined by a model that also takes intoaccount the inventory and service costs. We build simple modelsto address this question. Numerical results show that ignoringinventory costs in modelling location models may lead to inferiorlocation solutions.  相似文献   

9.
In many discrete location problems, a given number s of facility locations must be selected from a set of m potential locations, so as to optimize a predetermined fitness function. Most of such problems can be formulated as integer linear optimization problems, but the standard optimizers only are able to find one global optimum. We propose a new genetic-like algorithm, GASUB, which is able to find a predetermined number of global optima, if they exist, for a variety of discrete location problems. In this paper, a performance evaluation of GASUB in terms of its effectiveness (for finding optimal solutions) and efficiency (computational cost) is carried out. GASUB is also compared to MSH, a multi-start substitution method widely used for location problems. Computational experiments with three types of discrete location problems show that GASUB obtains better solutions than MSH. Furthermore, the proposed algorithm finds global optima in all tested problems, which is shown by solving those problems by Xpress-MP, an integer linear programing optimizer (21). Results from testing GASUB with a set of known test problems are also provided.  相似文献   

10.
In this paper we discuss the multicriteria p-facility median location problem on networks with positive and negative weights. We assume that the demand is located at the nodes and can be different for each criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the graph and the corresponding set of non-dominated objective values. To that end, we first characterize the linearity domains of the distance functions on the graph and compute the image of each linearity domain in the objective space. The lower envelope of a transformation of all these images then gives us the set of all non-dominated points in the objective space and its preimage corresponds to the set of all Pareto-optimal solutions on the graph. For the bicriteria 2-facility case we present a low order polynomial time algorithm. Also for the general case we propose an efficient algorithm, which is polynomial if the number of facilities and criteria is fixed.  相似文献   

11.
The Colombian coffee supply network, managed by the Federación Nacional de Cafeteros de Colombia (Colombian National Coffee-Growers Federation), requires slimming down operational costs while continuing to provide a high level of service in terms of coverage to its affiliated coffee growers. We model this problem as a biobjective (cost-coverage) uncapacitated facility location problem (BOUFLP). We designed and implemented three different algorithms for the BOUFLP that are able to obtain a good approximation of the Pareto frontier. We designed an algorithm based on the Nondominated Sorting Genetic Algorithm; an algorithm based on the Pareto Archive Evolution Strategy; and an algorithm based on mathematical programming. We developed a random problem generator for testing and comparison using as reference the Colombian coffee supply network with 29 depots and 47 purchasing centers. We compared the algorithms based on the quality of the approximation to the Pareto frontier using a nondominated space metric inspired on Zitzler and Thiele's. We used the mathematical programming-based algorithm to identify unique tradeoff opportunities for the reconfiguration of the Colombian coffee supply network. Finally, we illustrate an extension of the mathematical programming-based algorithm to perform scenario analysis for a set of uncapacitated location problems found in the literature.  相似文献   

12.
13.
We propose a 2-approximation algorithm for a facility location problem with stochastic demands. At open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. Costs incurred are expected transportation costs, facility operating costs and inventory costs.  相似文献   

14.
The minimax spherical location problem is formulated in the Cartesian coordinate system using the Euclidean norm, instead of the spherical coordinate system using spherical arc distance measures. It is shown that minimizing the maximum of the spherical arc distances between the facility point and the demand points on a sphere is equivalent to minimizing the maximum of the corresponding Euclidean distances. The problem formulation in this manner helps to reduce Karush-Kuhn-Tucker necessary optimality conditions into the form of a set of coupled nonlinear equations, which is solved numerically by using a method of factored secant update with a finite difference approximation to the Jacobian. For a special case when the set of demand points is on a hemisphere and one or more point-antipodal point pair(s) are included in the demand points, a simplified approach gives a minimax point in a closed form.  相似文献   

15.
In this paper, we introduce the transfer point location problem. Demand for emergency service is generated at a set of demand points who need the services of a central facility (such as a hospital). Patients are transferred to a helicopter pad (transfer point) at normal speed, and from there they are transferred to the facility at increased speed. The general model involves the location of p helicopter pads and one facility. In this paper, we solve the special case where the location of the facility is known and the best location of one transfer point that serves a set of demand points is sought. Both minisum and minimax versions of the models are investigated. In follow up papers we investigate the general model using the results obtained in this paper.  相似文献   

16.
Pisinger et al. introduced the concept of ‘aggressive reduction’ for large-scale combinatorial optimization problems. The idea is to spend much time and effort in reducing the size of the instance, in the hope that the reduced instance will then be small enough to be solved by an exact algorithm.  相似文献   

17.
A D.C. optimization method for single facility location problems   总被引:4,自引:0,他引:4  
The single facility location problem with general attraction and repulsion functions is considered. An algorithm based on a representation of the objective function as the difference of two convex (d.c.) functions is proposed. Convergence to a global solution of the problem is proven and extensive computational experience with an implementation of the procedure is reported for up to 100,000 points. The procedure is also extended to solve conditional and limited distance location problems. We report on limited computational experiments on these extensions.This research was supported in part by the National Science Foundation Grant DDM-91-14489.  相似文献   

18.
The problem of maximizing the sum of certain composite functions, where each term is the composition of a convex decreasing function, bounded from below, with a convex function having compact level sets arises in certain single facility location problems with gauge distance functions. We show that this problem is equivalent to a convex maximization problem over a compact convex set and develop a specialized polyhedral annexation procedure to find a global solution for the case when the inside function is a polyhedral norm. As the problem was solved recently only for local solutions, this paper offers an algorithm for finding a global solution. Implementation and testing are not treated in this short communication.An earlier version of this paper appeared in the proceedings of a conference on Recent Advances in Global Optimization, C. Floudas and P. Pardalos, eds., Princeton University Press, 1991.  相似文献   

19.
We consider a robust location–allocation problem with uncertainty in demand coefficients. Specifically, for each demand point, only an interval estimate of its demand is known and we consider the problem of determining where to locate a new service when a given fraction of these demand points must be served by the utility. The optimal solution of this problem is determined by the “minimax regret” location, i.e., the point that minimizes the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. For the case where the demand points are vertices of a network we show that the robust location–allocation problem can be solved in O(min{pn − p}n3m) time, where n is the number of demand points, p (p < n) is the fixed number of demand points that must be served by the new service and m is the number of edges of the network.  相似文献   

20.
《代数通讯》2013,41(11):5319-5330
Abstract

Let k be an algebraically closed field of characteristic ≠2 and let G be a connected, reductive algebraic group with involution θ ∈ Aut(G). A (G, θ)-module is a rational G-module with a compatible action of θ. The purpose of this note is to classify the irreducible (G, θ)-modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号