首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the conventional Ohmic regime, magnetoresistance effects comprise the ordinary responses to the external magnetic field and extraordinary responses to the internal magnetization. Here we study magnetoresistance effects in the Coulomb blockade regime using a ferromagnetic (Ga, Mn)As single electron transistor. We report measurements of the magneto-Coulomb blockade effect due to the direct coupling of high external magnetic fields and the Coulomb blockade anisotropic magnetoresistance associated with magnetization rotations in the ferromagnet. The latter, extraordinary magnetoresistance effect is characterized by low-field hysteretic magnetoresistance which can exceed three orders of magnitude. The sign and size of this magnetoresistance signal is controlled by the gate voltage, and the data are interpreted in terms of anisotropic electrochemical shifts induced by magnetization reorientations. Non-volatile transistor-like applications of the Coulomb blockade anisotropic magnetoresistance are briefly discussed.  相似文献   

2.
Two-dimensional electron gas systems modulated by a lateral magnetic superlattice are proposed and the related magnetoresistance effect is described in this work. It is found that the magnetoresistance (MR) ratio of the given structures depends strongly on the uniform magnetic field, and the peaks of the MR ratio depressed linearly with the increase of the uniform magnetic field. This feature can be utilized in practical linear magnetoresistance (LMR) devices.  相似文献   

3.
We have measured the Hall effect and the transverse magnetoresistance in NbSe3 single crystals. In the liquid helium temperature range we observed an absolute negative magnetoresistance (NMR) — the value of the resistance under magnetic field being much lower than that at zero field — in NbSe3 single crystals with a thickness less than 5 μm with the magnetic field oriented in the (b, c) plane. We show that this NMR effect is observed in the magnetic field range in which the Hall constant changes its sign. The results are qualitatively explained by the change of the surface scattering contribution to the magnetoconductance in the magnetic field range near the Hall voltage zero crossing.  相似文献   

4.
In this paper, Ga-doped ZnO (GZO) films were deposited on glass substrates at different substrate temperatures by RF magnetron sputtering. The effect of substrate temperature on the structural, surface morphological properties, Seebeck and magnetoresistive effects of GZO films was investigated. It is found that the GZO films are polycrystalline and preferentially in the [0 0 2] orientation, and the film deposited at 300 °C has an optimal crystal quality. Seebeck and magnetoresistive effects are apparently observed in GZO films. The thermoelectromotive forces are negative. Decreasing substrate temperature and annealing in N2 flow can decrease carrier concentration. The absolute value of the Seebeck coefficient increases with decreasing carrier concentration. The maximal absolute value of Seebeck coefficient is 101.54 μV/K for the annealed samples deposited at the substrate temperature of 200 °C. The transverse magnetoresistance of GZO films is related to both the magnetic field intensity and the Hall mobility. The magnetoresistance increases almost linearly with magnetic field intensity, and the films deposited at higher substrate temperature have a stronger magnetoresistance under the same magnetic field, due to the larger Hall mobility.  相似文献   

5.
We present the magnetoresistance measurements of ultrathin Mn5Ge3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between MnsGe3 and Ge (111), the thickness of MnsGe3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn5 Ge3 films appears a peak at about 6 kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn5 Ge3 film is a potential material for spin injection.  相似文献   

6.
The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.  相似文献   

7.
We report on magnetoresistance measurements in thin nickel films modulated by a periodic magnetic field emanating from micromagnetic arrays fabricated at the film surface. By increasing the strength of the magnetic potential using nickel and dysprosium micromagnets, we are able to quench the anisotropic magnetoresistance (AMR) in the film.  相似文献   

8.
We investigate the variations from as-deposited Zn1-x: Cox O magnetic semiconductors to the post-annealed Co- ZnCoO granular composite. The as-deposited Zn1-x Cox 0 magnetic semiconductor deposited under thermal nonequilibrium conditions is composed of Zn1-x. Cox O nanograins of high Co concentration. The room-temperature ferromagnetism with high magnetization and large negative magnetoresistance are found in the as-deposited samples. By annealing, the samples become of granular composite consisting of the Co metal grains and the remanent Zn1-x CoxO matrix. Although the magnetization is enhanced after annealing, the spin-dependent negative magnetoresistance disappears at room temperature. The magnetoresistance observed in the annealed samples in the high field region has no relation with the ferromagnetism, which in turn indicates that the roomtemperature ferromagnetism and large negative magnetoresistance observed in the as-deposited are the intrinsic properties of the Zn1-x Cox O magnetic semiconductor.  相似文献   

9.
Abstract

The electronic transport properties of Dirac fermions in chemical vapour-deposited single-layer epitaxial graphene on anSiO2/Si substrate have been investigated using the Shubnikov–de Haas (SdH) oscillations technique. The magnetoresistance measurements were performed in the temperature range between 1.8 and 43 K and at magnetic fields up to 11 T. The 2D carrier density and the Fermi energy have been determined from the period of the SdH oscillations. In addition, the in-plane effective mass as well as the quantum lifetime of 2D carriers have been calculated from the temperature and magnetic field dependences of the SdH oscillation amplitude. The sheet carrier density (1.42 × 1013 cm?2 at 1.8 K), obtained from the low-field Hall Effect measurements, is larger than that of 2D carrier density (8.13 × 1012 cm?2). On the other hand, the magnetoresistance includes strong magnetic field dependent positive, non-oscillatory background magnetoresistance. The strong magnetic field dependence of the magnetoresistance and the differences between sheet carrier and 2D carrier density can be attributed to the 3D carriers between the graphene sheet and the SiO2/Si substrate.  相似文献   

10.
We have investigated ballistic magnetoresistance effects in a two dimensional electron gas subjected to a periodic magnetic field that alternates in sign. The magnetic field was produced by a submicron ferromagnetic grating, made of either nickel or cobalt stripes, which was fabricated at the surface of the heterostructure. We observe giant magnetoresistance effects due to the channelling of electrons along lines of zero magnetic field orientated perpendicular to the current. Our semiclassical model accounts in great detail for all features in the magnetoresistance.  相似文献   

11.
Microwave magnetoresistance of lightly doped (nondegenerate) p‐Ge has been studied by the electron spin resonance method, which can record the derivative of the microwave absorption with respect to the magnetic field. The change in the absorption is proportional to that in the conductivity of the semiconductor in the magnetic field (magnetoresistance). It was found that the averaging time of the light and heavy holes effective masses depends on temperature and on the magnetic field direction in a sample. An analysis of the derivative made it possible to determine regions of the fastest effective mass averaging.  相似文献   

12.
We report on magnetotransport measurements on millimeter-large super-lattices of CoFe nanoparticles surrounded by an organic layer. Electrical properties are typical of Coulomb blockade in three-dimensional arrays of nanoparticles. A large high-field magnetoresistance, reaching up to 3000%, is measured between 1.8 and 10 K. This exceeds by two orders of magnitude magnetoresistance values generally measured in arrays of 3d transition metal ferromagnetic nanoparticles. The magnetoresistance amplitude scales with the magnetic field/temperature ratio and displays an unusual exponential dependency with the applied voltage. The magnetoresistance abruptly disappears below 1.8 K. We propose that the magnetoresistance is due to some individual paramagnetic moments localized between the metallic cores of the nanoparticles, the origin of which is discussed.  相似文献   

13.
The longitudinal magnetoresistance has been investigated at temperatures in the range from 2.8 to 200 K in a magnetic field of up to 200 kOe with the aim of determining the temperature range and the magnetic field strength at which charge carrier scattering with spin flip occurs in n-type indium arsenide and n-type indium antimonide. It is established that quantum oscillations of the longitudinal magnetoresistance of indium arsenide exhibit weak zero maxima due to electron scattering with spin flip at temperatures in the range from 4 to 35 K in a magnetic field of 146 kOe. For the longitudinal magnetoresistance of indium antimonide, zero maxima caused by electron scattering with spin flip are revealed in the temperature range from 60 to 80 K in a magnetic field of 132 kOe.  相似文献   

14.
Grain size effects on magnetic and transport properties for heavily Sr-doped A-type antiferromagnetic La0.4Sr0.6MnO3 ceramics were studied. It was observed that with decrease in grain size, surface ferromagnetism could be introduced due to bond-breaking at surfaces. With decrease in grain size, the surface ferromagnetism was enhanced, and the phase transition order distinguished from the Arrott plot was a second one. The surface-induced ferromagnetism was insulating as judged from transport properties. With decrease in grain size, magnetoresistance was largely improved for both high magnetic and low magnetic fields. Under a 500 Oe magnetic field, the magnetoresistance is improved from 0.2%, 0.1%, 0.03% and 0.02% for the sample with grain size of 150 nm at 10, 100, 200 and 300 K, respectively, to 3%, 2.3%, 0.43% and 0.12% for the sample with grain size of 20 nm at 10, 100, 200 and 300 K. It was interesting to find that large magnetoresistance could be induced due to the surface ferromagnetism in A-type antiferromagnetic La0.4Sr0.6MnO3 nanoparticles, which suggested that it was possible to search for manganites with relatively high low-field magnetoresistance in nanostructured A-type antiferromagnetic materials.  相似文献   

15.
We report the detailed results of magnetization and magnetoresistance measurements in the Ru doped layered manganite system La1.2Sr1.8Mn2−xRuxO7 (x=0, 0.1, 0.5, 1.0). High-resolution measurements of magnetization and magnetoresistance were carried out as functions of temperature, magnetic field and time. We find evidence for the existence of competing ferromagnetic and antiferromagnetic interactions resulting in the formation of a frustrated spin-glass-like state at low temperatures. The time dependent magnetization follows the relation very well. We find that Ru doping enhances the coercive field and drives the system towards a magnetically mixed phase at low temperatures. Large negative magnetoresistance values are observed in all samples and at low temperatures the magnetoresistance varies as the square root of the applied magnetic field.  相似文献   

16.
We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.  相似文献   

17.
Pei-Sen Li 《中国物理 B》2022,31(3):38502-038502
For convenient and efficient verification of the magnetoresistance effect in graphene spintronic devices, vertical magnetic junctions with monolayer graphene sandwiched between two NiFe electrodes are fabricated by a relatively simple way of transferring CVD graphene onto the bottom ferromagnetic stripes. The anisotropic magnetoresistance contribution is excluded by the experimental result of magnetoresistance (MR) ratio dependence on the magnetic field direction. The spin-dependent transport measurement reveals two distinct resistance states switching under an in-plane sweeping magnetic field. A magnetoresistance ratio of about 0.17 % is obtained at room temperature and it shows a typical monotonic downward trend with the bias current increasing. This bias dependence of MR further verifies that the spin transport signal in our device is not from the anisotropic magnetoresistance. Meanwhile, the IV curve is found to manifest a linear behavior, which demonstrates the Ohmic contacts at the interface and the metallic transport characteristic of vertical graphene junction.  相似文献   

18.
The magnetic field dependent transport behaviour of Co contacted multi-wall nanotubes is investigated. A sample with three Co electrodes has been measured by two-channel method with an in-plane magnetic field. When the in-plane magnetic field is perpendicular to the tube, high positive magnetoresistance up to 30% is obtained at low temperature from 3 K to 25K and with field parallel to the tube, negative magnetoresistance up to 15% is observed only from the high resistance junction. The detailed positive and negative magnetoresistance behaviour also changes with temperature.  相似文献   

19.
We have analyzed the resistance of La1.2Sr1.8Mn2(1 – z)O7 single crystal in magnetic fields from 0 to 90 kOe in the ferromagnetic temperature range. The observed magnetoresistance of La1.2Sr1.8Mn2O7 is described based on the spin-polaron conduction mechanism. The magnetoresistance is determined by the change in the sizes and magnetic moment directions of magnetic inhomogeneities (polarons). It is shown that the colossal magnetoresistance is ensured by an increase (along the magnetic field) of the polaron linear size. It is found using the method for separating the contributions of different conduction mechanisms to the magnetoresistance that the contribution to the magnetoresistance from the orientation mechanism at 80 K in low magnetic fields is close to 50%. With increasing magnetic field, this contribution decreases and becomes small in fields exceeding 30 kOe. The comparable contributions to the conductivity from the orientational and spin-polaron mechanisms unambiguously necessitate the inclusion of both conduction mechanisms in the magnetoresistance calculations. We have calculated the temperature variation of the polaron size (in relative units) in zero magnetic field and in a magnetic field of 90 kOe.  相似文献   

20.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号