首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
We give a brief introduction to the AdS/CFT correspondence and its application to QCD physics, especially its application in the study of quark-gluon-plasma(QGP) formed in the relativistic heavy ion collision (RHIC). This review is based on the talksgiven in several schools and programs for the phenomenologists working on nuclear physicsand particle physics.  相似文献   

2.
量子色动力学(QCD)求和规则是强子物理研究中的一种重要的非微扰方法, 已经成为强子物理与核物理研究中有力的工具。 简单介绍了QCD求和规则的基本概念、 方法与应用, 特别讨论了QCD求和规则近年来的发展和与之相关的一些前沿问题。 QCD sum rule is an important nonperturbative method in hadron physics, it has been a powerful technique in study of hadron physics and nuclear physics.We give a brief introduction to the basic idea, the method and its application of QCD sum rule, emphasize the development of this method and some topics in recent years.  相似文献   

3.
We review the recent literature on lattice simulations for few- and many-body systems. We focus on methods that combine the framework of effective field theory with computational lattice methods. Lattice effective field theory is discussed for cold atoms as well as low-energy nucleons with and without pions. A number of different lattice formulations and computational algorithms are considered, and an effort is made to show common themes in studies of cold atoms and low-energy nuclear physics as well as common themes in work by different collaborations.  相似文献   

4.
Werner Vogelsang 《Pramana》2004,63(6):1251-1267
We review some of the recent developments in QCD spin physics and highlight the spin physics program now underway at RHIC.  相似文献   

5.
Naba K. Mondal 《Pramana》1998,51(1-2):65-76
In this article, we review some of the recent results from CDF and DØ experiments at the Tevatron and their prospects at the upgrade. Among the topics discussed are top quark physics, electroweak physics, qcd physics and new physics beyond standard model.  相似文献   

6.
7.
One of the most fascinating challenges facing modern strong interaction physics is to understand the origin of the spin of the nucleon in terms of the spin and orbital angular momentum of the quarks and gluons. We review recent progress on this problem as well as some of the uncertainties associated with state of the art lattice QCD simulations. In particular, we explain the importance of the corrections associated with chiral extrapolation and finite volume corrections, especially for the term B(0) extracted from the appropriate low moment of the deeply virtual Compton scattering amplitude.  相似文献   

8.
We study vacuum of QCD in this work. The structure of non-local quark vacuum condensate, values of various local quark and gluon vacuum condensates, quark-gluon mixed vacuum condensate, quark and gluon virtuality in QCD vacuum state, quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in “rainbow” approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters. Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature, and many other theoretical calculations. The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations. This work is centrally important for studying non-perturbative QCD, and has many important applications both in particle and nuclear physics.  相似文献   

9.
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.  相似文献   

10.
原子核物理中的协变密度泛函理论   总被引:1,自引:0,他引:1       下载免费PDF全文
文章介绍了原子核协变密度泛函理论的历史发展、理论框架、对原子核基态和激发态的描述以及在一些交叉学科领域的应用。首先,通过回顾原子核物理研究中的几个重要里程碑并结合二十一世纪原子核物理面临的机遇和挑战,对当前核物理的研究热点和重要课题进行了介绍。随后系统介绍了原子核协变密度泛函理论,内容包括协变密度泛函理论的历史发展、一般理论公式、介子交换模型、点耦合模型、交换项、张量相互作用、物理观测量的计算公式等。协变密度泛函理论的应用包括原子核基态性质和激发态性质的描述以及在核天体物理与标准模型检验中的应用。其中,基态性质包括原子核结合能、半径、单粒子能级、共振态、磁矩、晕现象等。激发态性质包括原子核磁转动、低激发态性质、集体转动、量子相变、集体振动等。在核天体物理与标准模型检验的应用中,主要以核纪年法测算宇宙年龄和Cabibbo-Kobayashi-Maskawa矩阵的幺正性检验等为例,介绍协变密度泛函理论在交叉学科领域的应用。  相似文献   

11.
Bao-An Li  Lie-Wen Chen  Che Ming Ko   《Physics Reports》2008,464(4-6):113-281
The ultimate goal of studying isospin physics via heavy-ion reactions with neutron-rich, stable and/or radioactive nuclei is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, particularly the isospin-dependent term in the equation of state, i.e., the density dependence of the symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of the nuclear symmetry energy has been the main focus of the intermediate-energy heavy-ion physics community during the last decade, and significant progress has been achieved both experimentally and theoretically. In particular, a number of phenomena or observables have been identified as sensitive probes to the density dependence of nuclear symmetry energy. Experimental studies have confirmed some of these interesting isospin-dependent effects and allowed us to constrain relatively stringently the symmetry energy at sub-saturation densities. The impact of this constrained density dependence of the symmetry energy on the properties of neutron stars have also been studied, and they were found to be very useful for the astrophysical community. With new opportunities provided by the various radioactive beam facilities being constructed around the world, the study of isospin physics is expected to remain one of the forefront research areas in nuclear physics. In this report, we review the major progress achieved during the last decade in isospin physics with heavy ion reactions and discuss future challenges to the most important issues in this field.  相似文献   

12.
The open question of where, when, and how the heavy elements beyond iron enrich our Universe has triggered a new era in nuclear physics studies. Of all the relevant nuclear physics inputs, the mass of very neutron-rich nuclides is a key quantity for revealing the origin of heavy elements beyond iron. Although the precise determination of this property is a great challenge, enormous progress has been made in recent decades, and it has contributed significantly to both nuclear structure and astrophysical nucleosynthesis studies. In this review, we first survey our present knowledge of the nuclear mass surface, emphasizing the importance of nuclear mass precision in r-process calculations. We then discuss recent progress in various methods of nuclear mass measurement with a few selected examples. For each method, we focus on recent breakthroughs and discuss possible ways of improving the weighing of r-process nuclides.  相似文献   

13.
格点QCD是量子场论中最可靠的非微扰方法,是粒子物理最前沿课题之一,被应用到多个交叉领域,对物理学和其它科学的发展产生深远影响.本报告综述该领域突破性新进展、并具有重大理论和实验意义的几个方面的成果.  相似文献   

14.
The field nowadays called “many-body quantum chaos” was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented.  相似文献   

15.
The discovery more than twenty years ago, by the EMC Collaboration, that the deep-inelastic-scattering DIS structure functions are influenced by the nuclear environment stunned the nuclear physics community and brought quarks and gluons into the field with great impact. A great length of time has passed, but despite a semi-infinite number of papers on the subject, there is no explanation that is universally accepted. Many models (related in one way or another to QCD) have been successful in reproducing data for deep inelastic scattering on nuclear targets, but fewer have described both the DIS and nuclear Drell-Yan experiments. Although there are some positive indications, no model has been used to predict correctly and unambiguously new independent phenomena. We review the history and discuss the best experimental prospects for future discovery.  相似文献   

16.
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.  相似文献   

17.
Current research work related to the development of nuclear tracks comprising: (i) fundamental principles (nuclear track physics and chemistry, as well as development of track detectors and the relevant hard- and software), (ii) development of nuclear instruments and methods (etch track radiometers for ions, neutrons and cosmic rays, radon monitoring devices, radiography and fission track dating) is briefly outlined. The paper concentrates on a literature survey of applications of nuclear tracks in (iii) physical sciences (high-energy physics, nuclear physics and earth sciences), (iv) biomedical sciences (radiation protection, environment, cancer therapy), and (v) technological sciences (materials, nano-technology and nuclear technology).

Presently about 350 papers per year are being published in this field. Increased activity is noted in ion track technology (track-made membranes, modern nano-tech methodology including biological and biological-like samples, nano-electrode bio-electrochemistry, bio-magnetic assays and probes). New applications of nuclear tracks in fundamental (possibility of the detection of neutron quantum states in a gravitational field, nucleus–nucleus interactions, search for new chemical super-heavy elements) and applied science (precise measurements of the behaviour of radiation in human tissue in connection with of long term space missions and treatment of cancer) are surveyed, and possible research in the next decades is presented and examined in this review paper.  相似文献   


18.
Recent advances in lattice QCD have resulted in the first simulations with realistic quark vacuum polarization. Consequently a wide variety of high-precision (few percent) nonperturbative calculations are possible now. This paper reviews the recent developments that make this possible, and presents early evidence that the era of high-precision nonperturbative QCD is at hand. It also discusses the future impact of lattice QCD on experiments, and particularly for heavy-quark physics.  相似文献   

19.
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists seeking a deeper insight into the tools available for signal and background simulation at the LHC.  相似文献   

20.
This paper presents a selected review of recent experimental results on two-particle angular correlations in AuAu and pp collisions. Two-particle correlations in AuAu collisions exhibit a rich structure as a function of hadron transverse momentum, carrying information about the expansion of the medium produced in nuclear collisions, the energy loss of high-pT partons in the medium and the medium response to these high-pT partons or other initial state inhomogeneities. Evidence on the interplay between initial state fluctuations and the final state correlation structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号