首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SuperNEMO experiment is being designed to search for neutrinoless double beta decay. Its experimental technique of tracking and calorimetry provides the means to discriminate different underlying mechanisms for neutrinoless double beta decay by measuring the angular and energy distributions of electrons. The results of a study by the SuperNEMO Collaboration and F. Deppisch (in preparation) [7] for identifying light Majorana neutrino exchange and right-handed currents are presented.  相似文献   

2.
The fundamental importance of searching for neutrinoless double-beta decay is widely recognized. Observation of the decay would tell us that the total lepton number is not conserved and that, consequently, neutrinos are massive Majorana fermions. The same statement could be made in the case of observing neutrinoless double-electron capture. We address the question of the sensitivity of the 0νεε decay to the effective mass of the Majorana neutrino. According to our estimates, in the case of 152Gd and 164Er the sensitivity can be comparable to the favored 0νββ decays of nuclei. The main uncertainty in the prediction of half-lives of the 0νεε decay stems from the lack of sufficient precision in measuring the mass difference between the parent and daughter atoms. More accurate measurements can be accomplished using the modern high-precision ion traps.  相似文献   

3.
韩柯 《物理》2021,50(6):361-370
无中微子双贝塔衰变是目前粒子物理与核物理学家积极寻找的一种极其稀有的原子核衰变模式。它的发现将验证中微子是否是其本身的反粒子,也就是通常指的马约拉纳费米子。同时这一物理过程破坏轻子数守恒,也可以为宇宙初期的正反物质不对称性提供重要的条件。鉴于其极重要的物理意义,国际上多个实验组利用不同的探测器技术,在多种不同的目标同位素中寻找这一突破粒子物理标准模型的稀有衰变。目前主流实验还未发现确定的无中微子双贝塔衰变信号,但对其半衰期的限制已经达到了1026年量级。国内近期也开展了一系列预研实验,期望在未来几年内可以确定一到两个切实可行的实验方案,开展吨级实验。  相似文献   

4.
5.
We construct a model where neutrino Majorana masses are small and hierarchical but where neutrinoless double beta decay occurs at an observable rate potentially detectable by present day experiments.  相似文献   

6.
We discuss the nuclear structure elements participant in the calculation of the half-life of the neutrinoless double beta decay, and the consequences upon the adopted limits of the electron-neutrino mass. Presented by O. Civitarese at the Workshop on calculation of double-beta-decay matrix elements (MEDEX’05), Corfu, Greece, September 26–29, 2005.  相似文献   

7.
Neutrinoless double beta-decay (0vbb-decay) is the most promising approach to distinguish between the possibilities of a Dirac or a Majorana nature of neutrinos. Additionally, a measurement of the half-life of 0vbb-decay can give information on the absolute mass scale of neutrinos. At the moment HPGe detectors yield the most sensitive limits on this Lepton-number violating process. The segmentation of HPGe detectors increases the experimental sensitivity by allowing the reconstruction of event topologies. The successful operation of prototype detectors submerged in cryoliquid demonstrates the viability of this experimental approach.  相似文献   

8.
Charge-exchange reactions of (n,p) and (p,n) types at intermediate energies are introduced as a tool for the study of nuclear matrix element in ββ decay. Here, the (n,p) type reactions are realized through , where 2He refers to two protons in a singlet 1S0 state and where both of these are momentum analyzed and detected by the same spectrometer and detector. These reactions have been developed and performed exclusively at KVI, Groningen (NL), using an incident deuteron energy of 183 MeV. The  reaction is of (p,n) type and was developed at the RCNP facility in Osaka (JP) at incident energies of 420 MeV. Using both reaction types one can extract the Gamow-Teller transition strengths B(GT+) and , which define the two “legs” of the ββ decay matrix elements for the 2νββ decay. The high resolution available in both reactions allows a detailed insight into the excitations of the intermediate odd-odd nuclei and, as will be shown, some unexpected features are being unveiled.  相似文献   

9.
We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume S4, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter mee is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.  相似文献   

10.
The process of neutrinoless double electron (0νECEC0νECEC) capture is revisited for those cases where the two participating atoms are nearly degenerate in mass. The theoretical framework is the formalism of an oscillation of two atoms with different total lepton number (and parity), one of which can be in an excited state so that mass degeneracy is realized. In such a case and assuming light Majorana neutrinos, the two atoms will be in a mixed configuration with respect to the weak interaction. A resonant enhancement of transitions between such pairs of atoms will occur, which could be detected by the subsequent electromagnetic de-excitation of the excited state of the daughter atom and nucleus. Available data of atomic masses, as well as nuclear and atomic excitations are used to select the most likely candidates for the resonant transitions. Assuming an effective mass for the Majorana neutrino of 1 eV, some half-lives are predicted to be as low as 1022 years in the unitary limit. It is argued that, in order to obtain more accurate predictions for the 0νECEC0νECEC half-lives, precision mass measurements of the atoms involved are necessary, which can readily be accomplished by today?s high precision Penning traps. Further advancements also require a better understanding of high-lying excited states of the final nuclei (i.e. excitation energy, angular momentum and parity) and the calculation of the nuclear matrix elements.  相似文献   

11.
Double beta decay is indispensable to solve the question of the neutrino mass matrix together with oscillation experiments. Recent analysis of the most sensitive experiment since nine years—the HEIDELBERG-MOSCOW experiment in Gran-Sasso—yields a first indication for the neutrinoless decay mode. This result is the first evidence for lepton number violation and proves the neutrino to be a Majorana particle. We give the present status of the analysis in this report. It excludes several of the neutrino mass scenarios allowed from present neutrino oscillation experiments—only degenerate scenarios and those with inverse mass hierarchy survive. This result allows neutrinos to still play an important role as dark matter in the Universe. To improve the accuracy of the present result, considerably enlarged experiments are required, such as GENIUS. A GENIUS Test Facility has been funded and will come into operation by early 2003.  相似文献   

12.
The present experimental status in the search for neutrinoless double beta decay is reviewed, with emphasis on the first indication for neutrinoless double beta decay found in the HEIDELBERG-MOSCOW experiment, giving first evidence for lepton number violation and a Majorana nature of the neutrinos. Future perspectives of the field are briefly outlined.  相似文献   

13.
In Asaka et al (2021 Phys. Rev. D 103, 015014), Asaka, Ishida and Tanaka put forward an interesting possibility that the neutrinoless double beta decay can be hidden in the minimal seesaw model with the two right-handed neutrinos having a hierarchical mass structure: the lighter one is lighter enough than the typical Fermi-momentum scale of nuclei while the heavier one is sufficiently heavy to decouple from the neutrinoless double beta decay. Then, in the basis where the mass matrices of the charged leptons and right-handed neutrinos are diagonal, for some particular texture of the Dirac neutrino mass matrix ${M}_{{\rm{D}}}^{}$, the neutrinoless double beta decay can be hidden. In this paper, on top of this specified model, we study the interesting scenario that ${M}_{{\rm{D}}}^{}$ further obeys the TM1 symmetry or μτ reflection symmetry which are well motivated by the experimental results for the neutrino mixing parameters.  相似文献   

14.
15.
We discuss the non-radiative μ capture (i.e. ordinary muon capture, OMC) in light nuclei in terms of the nuclear shell model, and in the medium-and heavy-mass nuclei in terms of the quasiparticle random-phase approximation. A new probe of the double-beta-decay matrix elements, namely the use of the OMC to states of the intermediate nucleus of the double beta decay, is also addressed. Presented by J. Suhonen at the Workshop on calculation of double-beta-decay matrix elements (MEDEX’05), Corfu, Greece, September 26–29, 2005.  相似文献   

16.
The search for neutrinoless double β decay probes lepton number conservation with high sensitivity and investigates the neutrino nature and mass scale. Experiments presently in preparation will cover the quasi-degeneracy region of the neutrino mass pattern. Probing the inverted hierarchy region requires improved sensitivities and next-generation experiments, based either on large expansions of the present searches or on new ideas. We examine here a novel technology relying on ZnMoO4 scintillating bolometers, which can provide an experiment with background close to zero in the ton × year exposure scale. The promising performance of a pilot detector is presented, both in terms of energy resolution and background control. A preliminary study of the sensitivities of future experiments shows that the inverted hierarchy region is within the reach of the technique here proposed. A realistic phased approach program towards a next-generation search is presented and briefly discussed.  相似文献   

17.
18.
The β-decay of 105Sn was re-investigated at the ISOL facility of GSI Darmstadt by using a total absorption spectrometer. The experimental results include the half-life and β-delayed proton branching ratio of 32.7(5)s and 1.1(4) . 10-4, respectively, and the contribution of electron capture to the 105Sn decay of 0.420(35). The Gamow-Teller strength distribution peaking at 3.6MeV was measured, yielding a summed Gamow-Teller strength of 3.0(4). The latter data are discussed in comparison with shell-model predictions based on an empirical interaction.  相似文献   

19.
A new analysis of the renormalized proton–neutron quasiparticle random phase approximation based on simultaneous recalculation of the one-body density matrix and the pairing tensor has been used to study the double beta decay. We demonstrated that inclusion of the quasiparticle correlations at the BCS level reduces ground state correlations in the particle–particle channel of the proton–neutron interaction. We also simplified the RQRPA equations significantly obtaining a low-dimensioned set of linear equations for the quasiparticle densities. The formalism was applied to the double beta decay of 76Ge. Received: 4 January 1999 / Revised version: 29 March 1999  相似文献   

20.
The new project GENIUS will cover a wide range of the parameter space of predictions of SUSY for neutralinos as cold dark matter. Further it has the potential to be a real-time detector for low-energy (pp and 7Be) solar neutrinos. A GENIUS Test Facility has been funded and will come into operation by early 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号