首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
聚噻吩/多壁碳纳米管复合材料的导电性能   总被引:1,自引:0,他引:1  
通过共混多壁碳纳米管(MWNTs)和聚噻吩(PTh), 制备了PTh/MWNTs复合材料, 复合材料表现出良好的导电性能(电导率达16.1 S/m). 通过Raman, TG, XPS, UV-Vis等对复合材料进行了分析, 结果表明, MWNTs和 PTh之间存在强的相互作用, MWNTs上的离域电子与噻吩共轭主链上的π电子之间形成π-π共轭, 电子从MWNTs转移到聚噻吩, 增加了噻吩主链的有效共轭长度, 提高了复合材料的导电性能. FESEM分析表明, MWNTs和它周围被掺杂的聚噻吩通过π-π共轭作用结合在一起, 形成相对独立的导电单元, 在复合材料的导电体系中起到主要作用.  相似文献   

2.
聚噻吩/多壁碳纳米管复合材料结构与导电机理的研究   总被引:3,自引:0,他引:3  
从结构和相互作用方面对聚噻吩(PTh)/多壁碳纳米管(MWNTs)复合材料进行了研究, 结果表明: 一方面聚噻吩本身的结构对其导电性能有一定的影响, 另一方面MWNTs作为一种掺杂剂, 和聚噻吩之间存在强的相互作用, 电子从MWNTs转移到聚噻吩. MWNTs和它周围被掺杂的聚噻吩通过π-π共轭作用形成相对独立的导电单元, 在复合材料的导电体系中起到主要作用, 随着这种导电单元数量的增加直至相互接触, 形成大的导电体系, 复合材料的电导率达到最大值.  相似文献   

3.
目前导电高分子材料主要集中在π-共轭的碳链体系和σ-共轭的聚硅烷体系.后来人们在聚合物主链或侧链同时引入π共轭性和σ共轭性的基团,形成σ-π共轭高聚物.这类材料掺杂后电导率能在较宽的范围内变化,从而赋予它们非常独特的光化学和光物理性质,可用作导体与半导体、光导体材料,以及非线性光学材料、光致抗蚀剂、电致发光装置中的发光二级管等,有可能成为方兴未艾的信息技术所必需的集成电子器件或集成光子器件中的关键材料之一.同π共轭和σ共轭体系相类似,σ-π共轭体系也只有在掺杂引入载流子的情况下才能导电.相比之下,对依赖于σ-π共轭体系的导电机理研究很少.例如,实验发现nSix(C=C)y掺杂后电导率先升高到10-3Scm-1后又降低到10-7Scm-1,这种现象在π共轭和σ共轭体系中并没有发现,至今也没有理论和实验解释.这类材料的导电性主要依赖于σ-共轭与π-共轭的组合程度以及它们的内部电子结构,因此开展这方面的理论研究工作是很必要的.本文选用了主链含有30个原子的nSix(C=C)y+进行了理论研究,以期为有目的地组合配置σ-共轭和π-共轭的组合结构开发新型光电功能材料提供理论支持.从能量最低稳定单元出发建立了计算模型并根...  相似文献   

4.
通过机械共混和溶液共混制备了多壁碳纳米管(MWNTs)/溴/聚苯乙炔(PPA)三元复合材料,复合材料表现出良好的导电性能,电导率为10S/m,达到掺溴MWNTs的导电水平.通过固体紫外光谱、XPS和SEM分析了复合材料中MWNTs、溴与PPA三者之间的相互作用,研究了独立导电单元的形成,以及导电单元对电导率提高所起的作用.结果表明,当MWNTs含量较低时,MWNTs和PPA之间的溴转移导致复合材料电导率降低;MWNTs含量较高时,独立导电单元的数目增多,复合材料的电导率随之大幅提高.  相似文献   

5.
多壁碳纳米管/溴/聚苯乙炔三元复合材料导电性能的研究   总被引:1,自引:0,他引:1  
通过机械共混和溶液共混制备了多壁碳纳米管(MWNTs)/溴/聚苯乙炔(PPA)三元复合材料, 复合材料表现出良好的导电性能, 电导率为10 S/m, 达到掺溴MWNTs的导电水平. 通过固体紫外光谱、XPS和SEM分析了复合材料中MWNTs、溴与PPA三者之间的相互作用, 研究了独立导电单元的形成, 以及导电单元对电导率提高所起的作用. 结果表明, 当MWNTs含量较低时, MWNTs和PPA之间的溴转移导致复合材料电导率降低; MWNTs含量较高时, 独立导电单元的数目增多, 复合材料的电导率随之大幅提高.  相似文献   

6.
溴蒸气掺杂聚苯乙炔的导电机理   总被引:2,自引:0,他引:2  
通过溴蒸气的吸附, 聚苯乙炔(PPA)的电导率比吸溴前提高近12个数量级. 采用固体紫外光谱、X光电子能谱研究了溴与PPA之间的p-π共轭效应, 探讨了掺溴PPA的导电机理. 研究表明, PPA掺溴产生了溴负离子和电子转移复合物, 促使导电率提高. 实验证明压力作用的增大有利于增强溴与PPA之间的共轭作用, 温度升高导致掺溴PPA中p-π共轭结构减少, 导致电导率降低.  相似文献   

7.
将磺化聚苯乙炔(SPPA)与多壁碳纳米管(MWNT)超声共混制备得到SPPA/MWNT复合材料. 用四探针电阻率测试、场发射扫描电镜(FESEM)、XPS、UV-Vis、XRD等方法对复合材料导电机理进行研究. 结果表明, SPPA/MWNT的电导率发生两次突跃;掺杂剂MWNT具有低的临界阈值; 临界阈值附近, 复合材料中MWNT具有不连续分布的现象及复合材料电阻呈负温度系数(NTC)效应; SPPA/MWNT复合材料中MWNT的碳原子对SPPA 进行掺杂. 推测复合材料的导电机理为, 共轭聚合物SPPA不仅被导电粒子MWNT物理填充, 同时还被MWNT的碳原子掺杂, 使复合材料中存在两种导电通路而导电, 一是因被掺杂而成为高电导率主体的SPPA相互接触形成的导电通路, 二是MWNT相互接触形成的导电通路.  相似文献   

8.
将磺化聚苯乙炔(SPPA)与多壁碳纳米管(MWCNTs)超声共混制备得到SPPA/MWCNTs复合材料. 用X光电子能谱仪、固体紫外-可见分光光度计、X射线衍射仪、四探针、场发射扫描电镜等对复合材料导电特性及机理进行研究. 结果表明: SPPA/MWCNTs 复合材料中SPPA与MWCNTs发生电荷转移而被掺杂, 并且由于SPPA与MWCNTs间的电荷转移, 彼此间存在一定的相互作用力; 复合材料电阻呈负温度系数效应; SPPA/MWCNTs复合材料电导率发生两次突跃. 可能的导电机理为, 复合材料中SPPA不仅被MWCNTs物理填充, 同时还被MWCNTs掺杂, 复合材料中存在两种导电通路, 一是SPPA与MWCNTs的碳原子发生电荷转移而被掺杂, 彼此之间存在一定的相互作用力, 导致SPPA包裹MWCNTs形成独立导体单元, 这种独立单元相互接触形成导电通路; 二是MWCNTs彼此之间相互接触形成导电通路, 并建立了该导电机理的理论模型.  相似文献   

9.
氯掺杂提高多壁碳纳米管的电导率   总被引:1,自引:0,他引:1  
高建生  徐学诚 《化学学报》2011,69(12):1403-1407
通过氯气吸附, 制备了掺氯多壁碳纳米管(Cl2-MWNTs)复合材料, 在低温、高温和紫外光照射条件下掺氯, 紫外光照射下掺氯制备的复合材料电导率最高, 和未掺氯MWNTs相比, 电导率提高到原来的5倍以上. 用热重、红外吸收光谱、紫外-可见吸收光谱、拉曼光谱和X光电子能谱分析研究掺氯碳纳米管中氯和MWNTs间的相互作用, 结果表明: 掺氯后MWNTs中π电子向氯转移, 氯与MWNTs形成共轭体系, π电子的离域性增强, 提高了复合材料的电导率.  相似文献   

10.
多壁碳纳米管与溴的相互作用及导电机理   总被引:1,自引:0,他引:1  
通过溴蒸气的吸附, 提高多壁碳纳米管(MWNT)的本征导电性能, 加溴多壁碳纳米管的电导率提高了3倍. X光电子能谱、近红外光谱、紫外光谱、拉曼光谱表明多壁碳纳米管与溴之间存在共轭作用, 这种作用导致多壁碳纳米管上的π电子向溴偏移, 产生空穴载流子. 利用半导体能带图, 提出加溴多壁碳纳米管微观体系模型来研究溴对多壁碳纳米管的作用及导电机理.  相似文献   

11.
Polyoxymethylene (POM)/multiwalled carbon nanotubes (MWNTs) nanocomposites were prepared through a simple solution‐evaporation method assisted by ultrasonic irradiation. To enhance the dispersion of MWNTs in POM, MWNTs were chemically functionalized with PEG‐substituted amine (MWNT‐g‐PEG), which exhibited strong affinity with POM due to their similar molecular structure. The thermal conductivity and the mechanical properties of the composites were investigated, which showed that the thermal conductive properties of POM were improved remarkably in the presence of MWNTs, whereas reduced by using MWNT‐g‐PEG due to the heat transport barrier of the grafted‐PEG‐substituted amine chain. A nonlinear increase of the thermal conductivity was observed with increasing MWNTs content, and the Maxwell‐Eucken model and the Agari model were used for theoretical evaluation. The relatively high effective length factor of the composite predicted with mixture equation indicated that there were few entangles of MWNTs for the samples of MWNT‐g‐PEG in the composites. The mechanical strength of the composites can be improved remarkably by using suitable content of such functionalized MWNTs, and with the increase of the aliphatic chain length of PEG‐substituted amine, the toughness of the composites can be enhanced. Transmission electron microscope result indicated that MWNT‐g‐PEG exhibited strong affinity with POM and a good dispersion of MWNTs was achieved in POM matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 905–912, 2010  相似文献   

12.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   

13.
A methodology for improving antistatic property of polyetherimide (PEI) composite using polyaniline (PANI) grafted multi‐walled carbon nanotubes (MWNTs) as conductive medium was proposed. First, the MWNTs grafted with PANI (PANI‐g‐MWNTs) were prepared by in‐situ polymerization in an emulsion system. Subsequently, PANI‐g‐MWNTs were blended with PEI using N‐methyl‐2‐pyrrolidone as solvent. After removing the solvent, the PEI/PANI‐g‐MWNT composite was prepared. As assisted conductive medium, the grafted PANI molecular chains on MWNT surface were dispersed in the PEI matrix to decrease the percolation value of the antistatic composites. The structure and morphology of PANI‐g‐MWNTs were characterized by Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X‐ray powder diffraction, respectively. The dispersion of PANI‐g‐MWNTs in PEI matrix was studied by scanning electron microscope. The electrical performance was characterized by highly resistant meter. The volume resistivity of the conductivity percolation threshold was 1.781 × 10?8 S/cm when the loading of PANI‐g‐MWNTs was 1.0 wt%. The conductivity of PANI‐g‐MWNTs/PEI composites was found to be higher than that of pristine MWNTs/PEI composite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Epoxy resin nanocomposites with different contents of multiwalled carbon nanotubes (MWNTs) are prepared. The interaction between MWNTs and the epoxy resin matrix and the microstructure and mechanical properties of the composites are systematically investigated by Fourier‐transform infrared (FTIR) spectroscopy, transmission electron microscopy, scanning electron microscopy, and positron annihilation technology. FTIR spectra reveal that two kinds of hydrogen bonds exist at the interface for the nanocomposites modified by amine, one between the epoxy group on the side chain and the NH group, and the other between the epoxy group on the alicycle and the NH group. Compared to unmodified MWNT composites, the modified MWNT composites possess better mechanical properties, which are attributed to stronger interfacial interaction resulting from an efficient load transfer from matrix to MWNTs. Positron annihilation lifetime spectroscopy is used to characterize the microstructure of the epoxy/MWNT composites. The subtransition and glass transition temperatures are determined by finite‐term positron lifetime analysis and the variation of the free‐volume size as a function of temperature. Shifts of structure transition temperatures of the composites are observed with increasing MWNT weight content. Interestingly, the continuous lifetime analysis reveals the existence of two long‐lived lifetime components above the glass transition temperature, which may be attributed to the formation of local ordered regions related to the packing density of chains.  相似文献   

15.
Summary: Electro‐active shape‐memory composites were synthesized using conducting polyurethane (PU) composites and multi‐walled carbon nanotubes (MWNTs). Surface modification of the MWNTs (by acid treatment) improved the mechanical properties of the composites. The modulus and stress at 100% elongation increased with increasing surface‐modified MWNT content, while elongation at break decreased. MWNT surface modification also resulted in a decrease in the electrical conductivity of the composites, however, as the surface modified MWNT content increased the conductivity increased (an order of 10−3 S · cm−1 was obtained in samples with 5 wt.‐% modified‐MWNT content). Electro‐active shape recovery was observed for the surface‐modified MWNT composites with an energy conversion efficiency of 10.4%. Hence, PU‐MWNT composites may prove promising candidates for use as smart actuators.

The electro‐active shape‐recovery behavior of PU‐MWNT composites. The pictured transition occurs within 10 s when a constant voltage of 40 V is applied.  相似文献   


16.
The in situ bulk polymerization method was applied to synthesize composites of multiwalled carbon nanotubes (MWNTs) and polystyrene (PS) under ultrasonication to open π-bonds in the MWNTs. Morphology of the composite products was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermal properties and molecular weight of the PS synthesized in the presence of the MWNTs were examined by thermogravimetric analysis (TGA) and gel permeation chromatography (GPC), respectively. The MWNTs were observed to play an important role as initiator consumers during the polymerization reaction. Electrical conductivity of a film-type sample of the PS/MWNT nanocomposite was found to increase with increased amount of MWNTs added, following the percolation theory.  相似文献   

17.
Differential scanning calorimetry (DSC), polarized optical microscopy, and X‐ray diffraction methods were used to investigate the isothermal crystallization behavior and crystalline structure of poly(?‐caprolactone) (PCL)/multiwalled carbon nanotube (MWNT) composites. PCL/MWNT composites were prepared via the mixing of a PCL polymer solution with carboxylic groups containing multiwalled carbon nanotubes (c‐MWNTs). Both Raman and Fourier transform infrared spectra indicated that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. A transmission electron microscopy micrograph showed that c‐MWNTs were well separated and uniformly distributed in the PCL matrix. DSC isothermal results revealed that introducing c‐MWNTs into the PCL structure caused strongly heterogeneous nucleation induced by a change in the crystal growth process. The activation energy of PCL drastically decreased with the presence of 0.25 wt % c‐MWNT in PCL/c‐MWNT composites and then increased with increasing MWNT content. The result indicated that the addition of c‐MWNT to PCL induced heterogeneous nucleation (lower total activation energy) at a lower c‐MWNT content and then reduced the transportation ability of polymer chains during crystallization processes at a higher MWNT content (higher total activation energy). A correlation between the crystallization kinetics, melting behavior, and crystalline structure of PCL/c‐MWNT composites was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 598–606, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号