首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The extraction of copper(II), nickel(II) and cobalt(II) from the aqueous phase with N,N'-bis(salicylaldehydene)-1,4-bis-(m-aminophenoxy)butane (MAS), which was synthesized from 1,4-bis(m-aminophenoxy)butane and salicylaldehyde, was studied. Microanalytical data, elemental analysis, UV-visible 1H and 13C n.m.r. spectra and IR-spectra were used to confirm the structures. The extractability and selectivity of divalent cations were evaluated as a function of relationship between distribution ratio of the metal and pH or ligand concentration. Cu+2 showed the highest extractability and selectivity at pH 6.0, whereas Ni+2 and Co+2 showed at pH 9.2. The stoichiometries of the compounds formed were estimated to be CuL, CoL, NiL, where L is N,N'-bis(salicylaldehydene)-1,4-bis-(m-aminophenoxy)butane. It was concluded that MAS can effectively be used in solvent extraction of copper(II), nickel(II) and cobalt(II) from the aqeous phase to the organic phase.  相似文献   

2.
Cadmium bioavailability and speciation using the permeation liquid membrane   总被引:1,自引:0,他引:1  
The permeation liquid membrane (PLM) technique was used to evaluate cadmium speciation in media resembling natural freshwaters. A planar sheet PLM system was characterized by measuring Cd fluxes in the absence and presence of complexing agents such as citrate, malonate, nitrilotriacetate and the Suwannee River standard humic acid. Comparison with theoretical speciation calculations and the results of a Cd2+ selective electrode, showed that free Cd was correctly measured using the planar sheet PLM within the studied concentration range, i.e. 10−8 to 10−4 M. The effect of pH and potentially co-transported ions on Cd transport through the PLM was also studied. An example of the ability of the hollow-fiber PLM (HFPLM) to measure free Cd in the nM range is also presented. In order to evaluate the usefulness of the technique as a predictor of bioavailability, Cd PLM measurements (fluxes) were compared to Cd biouptake (internalization flux) for a freshwater alga, Chlorella kesslerii, in the absence and presence of SRHA. The use of PLM measurements is shown to be an attractive tool to better understand Cd biouptake.  相似文献   

3.
Quantum-chemical calculations of the 1,10-phenanthroline complexes [M(en)(1,10-phen)]2+ (M = Pt, Pd, Ni; en = NH2C2H4NH2) were performed by the DFT B3LYP method in the 6-31G** basis set using the GAMESS-2006 program package. The calculations were also performed for the nickel complexes with 2,2′-bi-1,10-phenanthroline, [Ni(2,2′-bi-1,10-phen)]2+, and with its electron-excessive analog, [Ni(2,2′-bi-1,10-phen)]0, and also for the octahedral complex cation [Ni(2,2′-bi-1,10-phen)Cl(H2O)]+ characterized by single crystal X-ray diffraction. For the Ni(II) complexes, the stabilities of their high-and low-spin isomers were evaluated, and the structural features were revealed. The barriers to mutual transformations of the low-and high-spin Ni(II) complexes are low.  相似文献   

4.
A new analytical approach for the detection of Ni2+ utilizing an attenuated total reflection (ATR) technique is discussed in this paper. Nickel detection was accomplished on a silicon ATR parallelogram crystal uniformly coated by a ca. 1.5-microm Nafion film embedded with dimethylglyoxime (DMG) probe molecules. The detection of Ni2+ is based on the appearance of a unique infrared absorption peak at 1572 cm(-1) that corresponds to the C=N stretching mode in the nickel dimethylglyoximate, Ni(DMG)2, complex. The suitable operational pH range for the nickel infrared sensor is between 6 - 8. High alkalinity in the sample solution causes a leaching of Ni(DMG)2. The detection limit of the nickel infrared sensor is 1 ppm in a sample solution of pH = 8. Interference studies revealed that Cu2+ could compete with Ni2+ for the DMG sites in the Nafion matrix. The new nickel detection methodology can be potentially utilized, after further improvement, in field analysis to locate hot spots contaminated with a high ppm of Ni2+.  相似文献   

5.
《中国化学会会志》2017,64(2):205-216
In the present work, the nickel(II ) synergist complex with isobutyric acid (HLI ) and 5‐hydroxy‐4‐octanone oxime (HBI ), which were the corresponding short‐chain analogs of the active synergistic mixture of Versatic10 (HL ) and Lix63 (5,8‐diethyl‐7‐hydroxy‐6‐dodecanoneoxime, HB ), was prepared and studied by single‐crystal X‐ray diffraction (XRD ). The crystal structure of the nickel(II ) synergist complex showed that the composition of the complex was Ni(LI )2(HBI )2 with a cis ‐form octahedron geometry structure. Both intra‐ and intermolecular hydrogen bonding were observed in the crystal lattice. Compared with the free ligands, similar band shifts of Fourier transform infrared (FT‐IR ) spectra assigned to the stretching vibration of carbon–oxygen single bond (C O), the stretching vibration of carbon–nitrogen double bond (CN), and the disappearance of the scissoring vibration of α‐hydroxy (OH ) were correspondingly found in both the nickel(II ) synergist complex and the extracted nickel(II ) complex in the nonpolar organic phase. Combined with the results from ESI‐MS , XRD , and slope analysis, it was concluded that the major species of the extracted nickel(II ) complex in the nonpolar organic phase might possess a similar coordination structure [Ni(HB )2(L)2] as the nickel(II ) synergist complex, along with the neutral complex [Ni(HB )(B)2].  相似文献   

6.
The Ni(II) ion catalyzed thermal decomposition of peroxomonosulfate (PMS) was studied in the pH range 3.42–5.89. The rate is first order in [PMS] and Ni(II) ion concentrations. At pH greater than or equal to 5.23, the reaction becomes zero order in [PMS] and this changeover in the order of the reaction occurs at a higher concentration of nickel ions. The first‐order kinetics in PMS can be explained as a rate‐limiting step and is the transformation of nickel peroxomonosulfate into nickel peroxide. This peroxide intermediate reacts rapidly with another PMS to give oxygen and Ni(II). The formation of nickel peroxide is associated with a small negative or nearly zero entropy of activation. The zero‐order kinetics in [PMS] can be explained by the fact that the hydrolysis of aquated nickel(II) ions into hydroxocompounds is the rate‐limiting step. The turnover number is 2 at pH 3.42 and increases with pH. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 320–237, 2007  相似文献   

7.
Abstract

Ruthenium (II) 1,10-phenanthroline, Ru(phen)2+ 3, salts are used as ion interaction reagents in a basic mobile phase for the retention, resolution, and indirect photometric detection (IPD) of free amino acids on a polystyrene divinylbenzene (Hamilton PRP-1) column. Mobile phase Ru(phen)2+ 3 concentration and pH and type and concentration of organic modifier and counteranion affect retention and IPD. Underivatized amino acid elution order is influenced by side chain structure typical of ion exchange processes. Detection limits for the separation and detection of free amino acids using an isocratic elution condition are about 0.1 nmole for lower retained amino acids and 0.25 nmole for higher retained amino acids for a 3:1 signal:noise ratio. Gradient elution is possible but at higher detection limits.  相似文献   

8.
Nakagawa G  Wada H  Nakazawa O 《Talanta》1976,23(2):155-157
The rate of the ligand-substitution reaction of nickel(II)-TAC chelate (NiR(2)) with EDTA (Y) and 1,10-phenanthroline (X) has been determined spectrophotometrically in 20% v v dioxan over the pH range 5.7-6.3 at mu = 0.1 (KNO(3)) and 25 +/- 1 degrees . The substitution reaction with EDTA proceeds through the following two pathways: NiR(2) + H(+) right harpoon over left harpoon NiR(+) + HR, and NiR(2) + H(2)O right harpoon over left harpoon NiR(OH) + HR, The reaction of NiR(+) or NiR(OH) with EDTA is the rate-determining step, and k(1) = 2.1 x 10(3) l .mole(-1) .sec(-1) and k(2) = 7.9 x 10(6) l .mole(-1) .sec(-1).The substitution reaction with 1,10-phenanthroline proceeds as follows: NiR(+) + X right harpoon over left harpoon NiRX(+) At higher concentrations of 1,10-phenanthroline the release of TAC from NiR(2) by hydrogen ion is the rate-determining step, and k(3) = 2.4 x 10(5) l .mole(-1). sec(-1). At lower concentrations of 1,10-phenanthroline -d[NiR(2)]/dt is proportional both to [H(+)] and [X]. The value k(4) = 5.1 x 10(4) l. mole(-1). sec(-1) was calculated by the use of the steady-state approximation for [NiRX(+)]. The substitution with 1,10-phenanthroline proceeds much faster than that with EDTA. By the addition of a small amount of 1,10-phenanthroline, Ni can be titrated with EDTA at 50 degrees, with TAC as an indicator.  相似文献   

9.
The evaluation of the ecotoxicological risk of nickel (Ni) in surface water is hampered by a lack of speciation data. Six surface waters were sampled and speciation of Ni(II) was measured by the Donnan membrane technique (DMT) combined with radiochemical determination of 63Ni. The free Ni2+ ion fraction in the dissolved (<0.45 μm) phase was determined at background Ni concentration ((4-8) × 10−8 M) and at concentrations in the range of toxicity thresholds for the Ni sensitive species Cerodaphnia dubia (5 × 10−8 to 2 × 10−6 M). The free ion fraction ranged from 4 to 45% at background Ni and increased with increasing Ni concentration and water hardness and with decreasing pH. The equilibration time after addition of Ni2+ (3 h-7 d) did not significantly change the measured free ion fraction. Predictions of the Humic-Ion Binding Model WHAM (Windermere Humic Aqueous Model) VI overestimated the observed free Ni2+ fraction (median > two-fold), even when assuming that all dissolved organic matter (DOM) was present as fulvic acid (FA). The impact of several model parameters affecting the prediction of Ni speciation were evaluated, including the solubility product of Fe(OH)3, which affects the Fe competition for complexation by DOM. The best fit (R2 = 0.88) was obtained by increasing only the distribution term ΔLK2, which modifies the binding strength of multi-dentate sites, to accommodate the observed dependence of free ion fraction on Ni concentration.  相似文献   

10.
The natural highly charged lamellar silicate vermiculite was investigated as an exchanger matrix in doubly distilled water solution to exchange magnesium inside the lamella with the heavy cations copper, nickel, cobalt, and lead at the solid/liquid interface. The extension of each exchange reaction was dependent on time of reaction, pH, and cation concentration. The maximum time presented the following order Pb2+ < Ni2+ < Cu2+ < Co2+, which corresponds to 12, 24, 48, and 72 h, respectively. The best performance was observed for nickel, as represented by the exchange capacity Nf, which gave values 0.59, 0.76, 0.84, and 0.93 mmol g(-1) for Pb2+ < Co2+ < Cu2+ < Ni2+, respectively. This capacity is dependent on pH interval variation from 1 to 9, being significantly increased in alkaline condition. The isotherm data were adjusted to a modified Langmuir equation and from the data the spontaneous Gibbs free energy was calculated. Linear correlations were obtained through Gibbs free energy or the maximum capacity against the cationic radius plot, with the lowest values for the largest cation lead. An exponential correlation was also observed for the maximum capacity versus enthalpy of hydration plot, indicating a difficulty of the less hydrated cation, lead, in exchanging with magnesium inside the lamellar space, as suggested by the proposed mechanism. The saturated matrices with cations presented a decrease in interlayer distance in comparison with the original vermiculite, which can be related to the hydrated phases, characteristic for each cation, with a lowest value for lead.  相似文献   

11.
The crystal structure of the 1,10-phenanthroline bis(S-methyl-β-N-(4-methyloxyphenyl)methylendithiocarbazide)nickel(II) adduct, (Ni(SN)2phen) [SN = S-methyl-β-N-(4-methyloxyphenyl)methylendithiocarbazide, PHEN = phenanthroline], has been determined by single crystal X-ray diffraction. The nickel atom is in an octahedral environment, surrounded by two chelating SN ligands and one chelating phen molecule. The nitrogen atoms from phen are in the cis configuration. The other chelating diamines adducts of the parent complex (Ni(SN)2) were also studied, where the chelating diamnies are 5-nitro-1,10-phenanthroline(NO2phen), 2,2′-bipyridine (bipy), 4,4′-methyl-2,2′-bipyridine (Mebipy). The equilibria were determined by UV-vis spectrometry in dichloromethane. The coordination ability of the added ligands were influenced by substitute groupings and steric factors. From the structure and addition equilibrium studies, the possible addition mechanisms are also discussed.  相似文献   

12.
N-Thiophosphorylated thioureas, of general formula [(i-PrO) 2 P(S)NHC(S)] 2 Z (Z = f , y -diamino(oxy)alkyl or 1,10-diaza-18-crown-6), in the form of potassium salts, react with a number of soft ions (Cd 2+ , Zn 2+ , Co 2+ , Ni 2+ , Pd 2+ ) to form novel dimeric complexes. The cadmium (Z = HN(CH 2 ) 2 NH), palladium (Z = HN(CH 2 ) 2 O(CH 2 ) 2 NH), and cobalt (Z = 1,10-diaza-18-crown-6) complexes were analyzed by x-ray crystallography. In the former complex, crown cavities remain free. This fact will allow us to obtain "guest-host" complexes with alkali metal cations.  相似文献   

13.
The distribution of n-caprylic acid between an aqueous sodium sulphate solution and several organic diluents of various properties has been investigated, using14C-labelled n-caprylic acid. The distribution coefficients of the monomeric capyrlic acid and its dimerization constants in the organic phase were determined. The extraction of Fe(III) and Ni(II) with n-caprylic acid solutions in various diluents was studied using the AKUFVE solvent extraction equipment. The composition of the extracted compound of Fe(III) has been determined and the extraction constants for all the studied systems have been calculated. For the extraction of Ni(II) the constants of the extraction of nickel caprylate monomers and its dimerization constants in the organic phase have been calculated.  相似文献   

14.
研究钴(Ⅱ)-邻菲口罗啉络合物Co(Phen)2+2在玻碳电极上的伏安行为和对亚硝酸根电化学还原的催化作用以及影响催化作用的因素  相似文献   

15.
The separation and concentration of cobalt from ammoniacal solutions containing nickel and cobalt by an emulsion liquid membranes (ELMs) using 5,7-dibromo-8-hydroxyquinoline as extractant has been presented. Membrane solution consists of a diluent (kerosene), a surfactant (Span 80), a modifier (tributylphosphate), and an extractant (DBHQ). Very dilute sulphuric solution containing EDTA as complexing agent, buffered at pH 5.0, has been used as a stripping solution. pH of ammoniacal feed solution containing cobalt and nickel was adjusted to 9.0 with hydrochloric acid. The important variables governing the permeation of cobalt have been studied. These variables are membrane composition, pH of the feed solution, cobalt and nickel concentrations of the feed solution, mixing speed, surfactant concentration, extractant concentration, EDTA concentration and pH of the stripping solution, and phase ratio. After the optimum conditions had been determined, it was possible to selectively extract 99.0% of cobalt from ammoniacal feed solution containing Co2+ and Ni2+ ions. The separation factors of cobalt with respect to nickel, based on initial feed concentration, have experimentally found to be of as high as 247.5 for about equimolar Co–Ni feed solutions.  相似文献   

16.
The nickel(II) complex of an N2S2 ligand, derived from a diazacycle, N,N'-bis(mercaptoethyl)-1,5-diazacycloheptane, (bme-dach)Ni, Ni-1', serves as a metallodithiolate ligand to NiII, CuI, ZnII, Ag, and PbII. The binding ability of the NiN2S2 ligand to the metal ions was established through spectrochemical titrations in aqueous media and compared to classical S-donor ligands. For M = Ni, Zn, Pb, binding constants, log K = ca. 2. were computed for 1:1 Ni-1'/M(solvate) adducts; for Ag+ and Cu+, the 3:2 (Ni-1')3M2 adducts were the first formed products even in water with log beta3,2 values of 26 and >30, respectively. In all cases, the binding ability of Ni-S-R is intermediate between that of a free thiolate and a free thioether. The great specificity for copper over nickel and zinc by N2S2Ni, which serves as a reasonable structural model for the distal nickel of the acetyl CoA synthase active site, relates to biochemical studies of heterogeneity (metal content and type) in various preparations of acetyl CoA synthase enzyme.  相似文献   

17.
Ni/SiO2 materials with identical composition (SiO2/Ni = 1.0) have been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the silica gel, obtained at three different pH values. The present investigation was undertaken in an endeavor to study the effects of the silica gel support type and the reduction temperature on the formation and dispersion of the metallic nickel phase in the reduced Ni/SiO2 precursors of the vegetable oil hydrogenation catalyst. The physicochemical characterization of the unreduced and reduced precursors has been accomplished appropriately by powder X-ray diffraction, infrared spectroscopy, temperature programmed reduction and H2-chemisorption techniques. It can be stated that the texture peculiarities of the silica gels used as supports influence on the crystalline state and distribution of the deposited Ni-containing phases during the preparation of the precursors, on the reduction temperature of the investigated solids as well as on the bulk size and surface dispersion of the arising metallic nickel particles. It was shown that two types of Ni2+-species are formed during the synthesis procedure, namely basic nickel carbonate-like and Ni-phyllosilicate with different extent of presence, location and strength of interaction. The different location of these species is supposed to result in various strength of Ni-O and Ni-O-Si interaction, thus determining the overall reducibility of the precursors. It was specified that the Ni2+-species are strongly bonded to the surface of the silica gel obtained at neutral pH value and weakly bonded to the surface of those prepared in acidic and alkaline conditions. It was established that the precursor, derivates from the silica gel obtained at alkaline conditions, demonstrates both significant reduction of the Ni2+ ions at 430°C and finely dispersed metallic nickel particles on its surface. High dispersion of the metallic nickel might be the crucial reason for achieving of high activity in the vegetable oil hydrogenation.  相似文献   

18.
A nickel-1,10-phenanthroline complex supported on an octamolybdate, [{Ni(phen)2}2(x- Mo8O26)], has been hydrothermally synthesized with MoO3, H2MoO4, Ni(OAc)2· 6H2O and 1,10-phenathroline (1,10-phen) as raw materials. The crystals of the compound belong to monoclinic P21/n space group, a = 1.2952(2), b = 1.6659(10), c = 1.3956(12) nm, b =106.273(8)°, V = 2.8906(5) nm3, Z = 2. 5604 observable reflections (I >2s(I)) were used for structure resolution and refinements to converge to final R1 = 0.0414, wR2 = 0.0815. The result of structure determination shows that the compound contains octamolybdate possessing a novel structure type (named as x-isomer). The feature of x-[Mo8O26]4- is that it is composed of Mo6O6 ring and two MoO6 octahedra located at cap positions on opposite faces. The Mo6O6 ring contains two octahedral and four trigonal-bipyramidal MoVI atoms. Each x-[Mo8O26]4- unit is bonded with two [Ni(phen)2]2+ through terminal oxygen atoms of octahedral and neighbouring trigonal-bipyramidal Mo atom in the Mo6O6 ring. IR and UV-Vis spectra of the compound were measured and its electronic structure was studied by EHMO method.  相似文献   

19.
Publications on the binding characteristics of metals with humic acid (HA) are sparse. Here we investigated the release of nickel from Ni(II)-HA complexes using model solutions of three different [Ni(II)]/[HA] mole ratios at three different pH values; we also compared the results with those of [Ni(II)]/[FA] complexes from previous work in this laboratory. Ligand exchange kinetics using the competing ligand exchange method (CLEM) were studied using two different techniques: graphite furnace atomic absorption spectrometry (GFAAS) with Chelex 100 resin as the competing ligand, and adsorptive cathodic stripping voltammetry (AdCSV) with dimethylglyoxime as the competing ligand to measure the rate of dissociation of Ni(II)-HA complexes. The results of the kinetic studies showed that as the [Ni(II)]/[HA] mole ratio was decreased, the rate of dissociation of Ni(II)-HA complexes decreased, and the proportion of free Ni2+ ions plus very labile nickel complexes decreased while the proportion of the less labile kinetically distinguishable components increased. Generally, the rate of dissociation of Ni(II)-HA complexes was slower than that of Ni(II)-FA complexes. Studies on the validity of the kinetic model showed that the concentrations of chemical species varied in a reasonable way with pH and the [Ni(II)]/[HA] mole ratios, indicating that the kinetically distinguishable components have chemical significance and the kinetic model is valid.  相似文献   

20.
Microwave synthesis of two porous nickel glutarates was compared with conventional hydrothermal synthesis. The cubic nickel glutarate, [Ni20(C5H6O4)20(H2O)8] x 40 H2O (1), was synthesized by conventional electrical heating in several hours or days, depending on synthesis temperature. Crystallization was greatly accelerated by microwave irradiation, in which more stable, tetragonal nickel glutarate, [Ni22(C5H6O4)20(OH)4(H2O)10] x 38 H2O (2), was formed within a few minutes, suggesting the efficiency of the microwave technique in the synthesis of porous hybrid materials. The cubic phase 1 is formed preferentially at low pH, low temperature, and especially under conventional electrical heating. In contrast, the tetragonal phase 2 is obtained favorably at high pH, high temperature, and especially with microwave irradiation. This work demonstrates that the microwave method provides not only the very fast synthesis of a hybrid material, but also the possibility to discover a new porous hybrid material not yet identified by conventional hydrothermal synthesis. The hydrothermal formation of metal-organic hybrid materials in a matter of minutes is an important step towards developing commercially viable routes for producing this valuable class of materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号