首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense, crystalline arrays of InGaN nanorings, nanodots, and nanoarrows have been fabricated on GaN substrates by template-assisted nano-area selective growth. To create the nanostructures, we have used nanoporous anodic alumina films as templates to pattern nanopores in an SiO2 transfer layer, and then used this patterned SiO2 layer as a template for nitride growth by metalorganic chemical vapor deposition. We have varied the diameter of the deposited nitride nanostructures from 35 to 250 nm by changing the initial anodic alumina template structure. In addition, by controlling the nitride growth time we have created various types of nanostructures, from nanorings to nanoarrows. This structural evolution begins with the nucleation and formation of a nanoring structure, followed by coalescence and growth to form faceted nanodots, and finally lateral overgrowth to form faceted nanoarrows.  相似文献   

2.
This Review is a personal reflection on the research that led to the development of a method for growing gallium nitride (GaN) on a sapphire substrate. The results paved the way for the development of smart display systems using blue LEDs. The most important work was done in the mid to late 80s. The background to the author’s work and the process by which the technology that enables the growth of GaN and the realization of p‐type GaN was established are reviewed.  相似文献   

3.
The controlled crystallization of enantiomers of an organic compound (a cyclic phosphoric acid derivative) on templated micro‐patterned functionalised surfaces is demonstrated. Areas where a complementary chiral thiol has been located were effective heterogeneous nucleation centres when a solution of the compound is evaporated slowly. Various organic solvents were employed, which present a challenge with respect to other examples when water is used. The solvent and the crystallization method have an important influence on the crystal growth of these compounds. When chloroform was employed, well‐defined crystals grow away from the surface, whereas crystals grow in the plane from solutions in isopropanol. In both cases, nucleation is confined to the polar patterned regions of the surface, and for isopropanol growth is largely limited within the pattern, which shows the importance of surface chemistry for nucleation and growth. The apparent dependence on the enantiomer used in the latter case could imply stereo‐differentiation as a result of short‐range interactions (the templating monolayer is disordered, even at the nanometre scale). The size of the pattern of chiral monolayer also determines the outcome of the crystallization; 5 μm dots are most effective. Despite the low surface tension of the samples (relative to the high surface tension of water), differential solvation of the polar and hydrophobic layers of the solvents allows crystallization in the polar regions of the monolayer, therefore the polarity of the regions in which heterogeneous nucleation takes place is indeed very important. Despite the complex nature of the crystallization process, these results are an important step towards to the use of patterned surfaces for heterogeneous selective nucleation of enantiomers.  相似文献   

4.
A series of GaN layers was grown on sapphire (0001) substrates under various growth conditions by means of the molecular beam epitaxy (MBE) method, the optical characteristics and surface morphologies of the samples were studied. The results show that the line width of the GaN emission gradually decreases and the peak shifts under the Ga-rich condition by increasing the Ga-flux on keeping all other growth conditions unchanged. It has been also found that the resulted morphology is directly related to the Ga-flux.  相似文献   

5.
We report a simple and inexpensive approach to directly assemble arrays of cadmium sulfide (CdS) semiconductors onto transparent flexible poly(ethylene terephthalate) (PET) sheets via a polymer-mediated selective nucleation and growth process from an aqueous solution. This strategy of assembling functional materials onto plastics utilizes the surface functional molecules of the UV photooxidation patterned polymer to direct the nucleation and growth of CdS. We demonstrated that such assembled structures are viable for flexible macroelectronics, as manifested by the fabrication of CdS photodetector arrays on PET that can withstand bending. The best devices exhibited a specific detectivity of 3 x 10(11) cm Hz(1/2) W(-1) at 514-nm excitation wavelength at a modulation frequency of 90 Hz at room temperature. This direct assembly strategy eliminates additional lithography and etching steps during the deposition of the active inorganic semiconductor layer, is general to other inorganic materials and plastic substrates, and can enable low-cost, wearable, and/or disposable flexible electronics.  相似文献   

6.
为了获得高质量的高Al组分AlGaN外延材料,一般是在蓝宝石基片与外延层之间引入缓冲层或模板层(GaN、AlN或两者的交替周期超晶格)来提高AlGaN的外延质量,不同的缓冲层及结构对AlGaN的外延质量产生不同的影响.利用三轴晶高分辨X射线衍射(TAXRD)表征手段对2种生长结构下的AlGaN进行表征分析.  相似文献   

7.
We demonstrate a selective atomic layer deposition of TiO2 thin films on patterned alkylsiloxane self-assembled monolayers. Microcontact printing was done to prepare patterned monolayers of the alkylsiloxane on Si substrates. The patterned monolayers define and direct the selective deposition of the TiO2 thin film using atomic layer deposition. The selective atomic layer deposition is based on the fact that the TiO2 thin film is selectively deposited only on the regions exposing the silanol groups of the Si substrates because the regions covered with the alkylsiloxane monolayers do not have any functional group to react with precursors.  相似文献   

8.
We report high-throughput growth of highly aligned single-walled carbon nanotube arrays on a-plane and r-plane sapphire substrates. This is achieved using chemical vapor deposition with ferritin as the catalyst. The nanotubes are aligned normal to the [0001] direction for growth on the a-plane sapphire. They are typically tens of micrometers long, with a narrow diameter distribution of 1.34 +/- 0.30 nm. In contrast, no orientation was achieved for growth on the c-plane and m-plane sapphire, or when Fe films, instead of ferritin, were used as the catalyst. Such orientation control is likely related to the interaction between carbon nanotubes and the sapphire substrate, which is supported by the observation that when a second layer of nanotubes was grown, they followed the gas flow direction. These aligned nanotube arrays may enable the construction of integrable and scalable nanotube devices and systems.  相似文献   

9.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

10.
The optimisation of GaN-based electronic and optoelectronic devices requires control over the doping of the material. However, device performance, particular for lateral transport electronic devices, is degraded by the presence of unintentional doping, which for heteroepitaxial GaN layers grown in the polar (0001) orientation is mainly confined to a layer adjacent to the GaN/substrate interface. The use of scanning capacitance microscopy (SCM) has demonstrated that this layer forms due to the high rate of incorporation of gas phase impurities, primarily oxygen, during the early stages of growth, when N-rich semi-polar facets are often present. The presence of such facets leads to additional unintentional doping when defect density reduction strategies involving a three-dimensional growth phase (such as epitaxial lateral overgrowth) are employed. Many semi-polar epitaxial layers, on the other hand, exhibit significant unintentional doping throughout their thickness, except when a three-dimensional growth phase is introduced to aid in defect density reduction resulting in the presence of (0001) and non-polar facets which incorporate less dopant. Non-polar epitaxial samples exhibit behaviour more similar to (0001)-oriented material, but oxygen diffusion from the sapphire substrate along prismatic stacking faults also locally affects the extent of the unintentional doping in this case.  相似文献   

11.
Micro-patterned films obtained from micro-contact printing (microCP) method are often challenged by site selectivity limitation. For applications site-selectivity requires improvements. In this paper a site-selective deposition of the rutile TiO2 thin films on patterned SnO2 film, which was formed on the patterned octadecyltrichlorosilane (OTS) SAMs through microCP is described. The depositions proceeded in an environmentally friendly aqueous solution (SnCl4 and peroxotitanium acidic solution) at a lower temperature (80 degrees C). It is shown that the OTS SAMs has a good selectivity deposition for SnO2 particles, which was mainly dominated by the heterogeneous nucleation mechanism. The SnO2 layer had a structure-directing effect for growth of the rutile TiO2, which was usually formed above 600 degrees C. The patterned films were characterized by a variety of techniques, including ellipsometry, optical microscopy, SEM, AFM, XPS, and DLS to determine the thicknesses, topologies, microstructures, chemical compositions of the films, particle sizes and zeta potentials of the titanium particles.  相似文献   

12.
A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.  相似文献   

13.
An effective method for the catalyst-free selective-area growth of single-crystalline zinc oxide nanowires on patterned substrates defined by e-beam lithography and treated by chemical etching with increased surface roughness is reported. The nanowire growth is realized via a surface-roughness-assisted vapor–solid mechanism by thermal evaporation. The nanowires are vertically aligned on sapphire and randomly oriented on silicon substrates.  相似文献   

14.
Microtubule polymers typically function through their collective organization into a patterned array. The formation of the pattern, whether it is a relatively simple astral array or a highly complex mitotic spindle, relies on controlled microtubule nucleation and the basal dynamics parameters governing polymer growth and shortening. We have investigated the interaction between the microtubule nucleation and dynamics parameters, using macroscopic Monte Carlo simulations, to determine how these parameters contribute to the underlying microtubule array morphology (i.e. polymer density and length distribution). In addition to the well-characterized steady state achieved between free tubulin subunits and microtubule polymer, we propose that microtubule nucleation and extinction constitute a second, interdependent steady state process. Our simulation studies show that the magnitude of both nucleation and extinction additively impacts the final steady state free subunit concentration. We systematically varied individual microtubule dynamics parameters to survey the effects on array morphology and find specific sensitivity to perturbations of catastrophe frequency. Altering the cellular context for the microtubule array, we find that nucleation template number plays a defining role in shaping the microtubule length distribution and polymer density.  相似文献   

15.
A new method using defect-pit-assisted growth technology to successfully synthesize the high-quality single crystalline GaN nanostructures by ammoniating Ga(2)O(3) films was proposed in this paper. During the ammoniating process, the amorphous middle buffer layer may unavoidably produce some defects and dislocations. Some defect pits come out, which have the lowest surface energy and can subsequently be used as a mask/template or act as potential nucleation sites to fabricate the GaN actinomorphic nanostructures. The as-prepared products are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results indicate that all the reflections of the samples can be indexed to the hexagonal GaN phase and the clear lattice fringes in HRTEM further confirm the growth of high-quality single-crystal GaN nanostructures. The SEM images show that the nanostructures have been realized under different experimental conditions exhibiting different shapes: nanowires, nanorods, and nanobelts. No particles or other nanostructures are found in the SEM study, demonstrating that the product possesses pure nanostructures. These nanostructures show a very good emission peak at 366 nm, which will have a good advantage for applications in laser devices using one-dimensional structures. Finally, the growth mechanism is also briefly discussed.  相似文献   

16.
Development of the nanodevice that myosin-coated beads "walk" on actin filaments (F-actin) tracks for in vitro nanotransportation was hindered due to the difficulty of assembling large-area well-orientated F-actin tracks on the surface. In this work, we present a selective attachment of F-actin with controlled length on a patterned surface by employing biotinylated capped protein gelsolin as intermediate anchoring bridge. A patterned streptavidin layer was formed via coupling with a biotin layer that photo-actively attached to an amine-functionalized glass surface. The patterned film was found stable and homogenous compared to that obtained by microcontact printing method, according to the profiling with fluorescence microscopy. By a secondary blocking process, non-specific binding of F-actin to the patterned surface through electrostatic adsorption can be resisted. The length variation of F-actin as a function of gelsolin concentration was also investigated, implying that F-actin is appropriately of 2.5 μm in average length once F-actin/gelsolin molar ratio is 4:1. Finally, the selective attachment of F-actin was well characterized with quantifying the number of attached F-actin per unit area in the patterned areas over that in blocked areas. The density of F-actin was estimated at c.a. 2 μm(2) per actin filament molecule so that the distance between one another actin filament is estimated as c.a. 1.41-1.97 μm. The unique properties of F-actin, e.g. well flexibility or electrical conductivity, make it feasible to lay them down and form unidirectional aligned tracks by fluidic flow or electrical field. This may open a possibility for the long-distant movement of myosin-coated beads, offering a novel discipline for the development of micro-biochip in vitro.  相似文献   

17.
The combined effect of templating and solution additives on calcite crystallization was studied. Self-assembled monolayers of mercaptoundecanoic acid supported on silver, as templates, induced the uniform, oriented nucleation of calcite from the (012) plane. The presence of Mg2+ in the crystallizing solution affected the crystal growth dramatically, due to the selective Mg binding to the calcite planes roughly parallel to the c-axis. Highly homogeneous arrays of oriented crystals with characteristic sizes, shapes, and morphology, depending on the relative concentration of Mg and Ca ions, were synthesized.  相似文献   

18.
Functionalization of semiconductors constitutes a crucial step in using these materials for various electronic, photonic, biomedical, and sensing applications. Within the various possible approaches, selection of material-binding biomolecules from a random biological library, based on the natural recognition of proteins or peptides toward specific material, offers many advantages, most notably biocompatibility. Here we report on the selective functionalization of GaN, an important semiconductor that has found broad uses in the past decade due to its efficient electroluminescence and pronounced chemical stability. A 12-mer peptide ("GaN_probe") with specific recognition for GaN has evolved. The subtle interplay of mostly nonpolar hydrophobic and some polar amino acidic residues defines the high affinity adhesion properties of the peptide. The interaction forces between the peptide and GaN are quantified, and the hydrophobic domain of the GaN_probe is identified as primordial for the binding specificity. These nanosized binding blocks are further used for controlled placement of biotin-streptavidin complexes on the GaN surface. Thus, the controlled grow of a new, patterned inorganic-organic hybrid material is achieved. Tailoring of GaN by biological molecules can lead to a new class of nanostructured semiconductor-based devices.  相似文献   

19.
Films with a thousand alternating layers of isotactic polypropylene (PP) and polystyrene (PS) were prepared by layer‐multiplying coextrusion. The crystal structure of extremely thin PP layers confined between PS layers was studied by optical light microscopy (OM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray scattering (WAXS). Changes in structure were observed as the PP layer thickness decreased to the nanoscale. The thin PP discoids were largely composed of edge‐on lamellae with (040) planes lying flat on the interface. In layers 65 and 10‐nm thick, compressed d‐spacings in the directions perpendicular to the chains and loss of registry along the chain axis were suggestive of smectic packing of conformationally distorted chains. Even so, crystalline lamellae were distinguishable in the AFM images. In addition to the crystal population with (040) planes parallel to the interface, the WAXS from layers 65‐nm thick revealed another crystal fraction with (110) planes parallel to the interface and (040) planes perpendicular to the interface. This fraction was more evident in layers 10‐nm thick, where it accounted for approximately 10–20% of the crystallinity. Decreasing layer thickness resulted in a change of the crystal growth plane from the usual (110) to the more rare (010). The new crystal structure possibly served to fill‐in the radial structure of the dendritic discoids when a limitation to the thickness of the layer left only a little space for secondary nucleation of the crosshatched lamella. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3380–3396, 2004  相似文献   

20.
In this paper we describe the formation and characterization of self-assembled monolayers of octadecylphosphonic acid (ODPA) on epitaxial (0001) GaN films on sapphire. By immersing the substrate in its toluene solution, ODPA strongly adsorbed onto UV/O 3-treated GaN to give a hydrophobic surface. Spectroscopic ellipsometry verified the formation of a well-packed monolayer of ODPA on the GaN substrate. In contrast, adsorption of other primarily substituted hydrocarbons (C n H 2 n+1 X; n = 16-18; X = -COOH, -NH 2, -SH, and -OH) offered less hydrophobic surfaces, reflecting their weaker interaction with the GaN substrate surfaces. A UV/O 3-treated N-polar GaN had a high affinity to the -COOH group in addition to ODPA, possibly reflecting the basic properties of the surface. These observations suggested that the molecular adsorption was primarily based on hydrogen bond interactions between the surface oxide layer on the GaN substrate and the polar functional groups of the molecules. The as-prepared ODPA monolayers were desorbed from the GaN substrates by soaking in an aqueous solution, particularly in a basic solution. However, ODPA monolayers heated at 160 degrees C exhibited suppressed desorption in acidic and neutral aqueous solution maybe due to covalent bond formation between ODPA and the surface. X-ray photoelectron spectroscopy provided insight into the effect of the UV/O 3 treatment on the surface composition of the GaN substrate and also the ODPA monolayer formation. These results demonstrate that the surface of a GaN substrate can be tailored with organic molecules having an alkylphosphonic acid moiety for future sensor and device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号