首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
多孔介质干燥导致热质耦合传输过程。本文基于连续介质力学的宏观尺度,对多孔介质的热、湿和气三者耦合迁移进行数值模拟,研究压力梯度对热质传输的影响。多孔介质传质机理主要为水汽和空气的对流和扩散传输、吸附水在含湿量梯度作用下的自由扩散和其在温度梯度即Soret效应驱动下的流动。采用Galerkin加权余量的有限元方法,提出了...  相似文献   

2.
3.
冻土水热力耦合作用的数学模型及数值模拟   总被引:22,自引:0,他引:22  
将冻土体视为空间弹性体,提出了土体在冻结过程中水分场、温度场、应力场三场耦合的一般数学模型,并给出了相应的离散方程及其解法,最后给出了数值算例,并与实测值比较,证明了该模型和算法的正确性。  相似文献   

4.
研究了孔隙介质中热、水和汽流全耦合分析的并行计算方法.模型中采用了考虑毛细压力关系的修正有效应力概念,并考虑了相变和潜热传递.基本变量为位移、毛细压力、汽压和温度.并行程序是在国家高性能计算中心(北京)的曙光1000A上借助PVM(Parallel Virtual Machine)软件系统实现的,考题显示出较高的并行加速比和效率.  相似文献   

5.
In this paper, we study mass flow rate of rarefied gas flow through micro/nanoscale channels under simultaneous thermal and pressure gradients using the direct simulation Monte Carlo (DSMC) method. We first compare our DSMC solutions for mass flow rate of pure temperature-driven flow with those of Boltzmann-Krook-Walender equation and Bhatnagar-Gross-Krook solutions. Then, we focus on pressure–temperature-driven flows. The effects of different parameters such as flow rarefaction, channel pressure ratio, wall temperature gradient and flow bulk temperature on the thermal mass flow rate of the pressure–temperature-driven flow are examined. Based on our analysis, we propose a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number. We examine our predictive relation by simulation of pressure-driven flows under uniform wall heat flux (UWH) boundary condition. Walls under UWH condition have non-uniform temperature distribution, that is, thermal creep effects exist. Our investigation shows that developed analytical relation could predict mass flow rate of rarefied pressure-driven gas flows under UWH condition at early transition regime, that is, up to Knudsen numbers of 0.5.  相似文献   

6.
一种全耦合多相流分析的并行计算方法   总被引:2,自引:0,他引:2  
王希诚 《力学学报》1999,31(3):276-284
研究了孔隙介质中热、水和汽流全耦合分析的并行计算方法.模型中采用了考虑毛细压力关系的修正有效应力概念,并考虑了相变和潜热传递.基本变量为位移、毛细压力、汽压和温度.并行程序是在国家高性能计算中心(北京)的曙光1000A上借助PVM(ParalelVirtualMachine)软件系统实现的,考题显示出较高的并行加速比和效率  相似文献   

7.
A mathematical model for calculating the nonisothermal moisture transfer in building materials is presented in the article. The coupled heat and moisture transfer problem was modeled. Vapor content and temperature were chosen as principal driving potentials. The coupled equations were solved by an analytical method, which consists of applying the Laplace transform technique and the Transfer Function Method. A new experimental methodology for determining the temperature gradient coefficient for building materials was also proposed. Both the moisture diffusion coefficient and the temperature gradient coefficient for building material were experimentally evaluated. Using the measured moisture transport coefficients, the temperature and vapor content distribution inside building materials were predicted by the new model. The results were compared with experimental data. A good agreement was obtained.  相似文献   

8.
This paper considers several problems involving coupled heat–moisture–air flow indeformable unsaturated media. A set of coupled non-linear governing equations expressed in terms of displacements, capillary pressure, air pressure and temperature are used in the analysis. The mathematical model accounts for fully coupled heat and moisture flow, volume strain effects on water-air-heat flow, stress and temperature dependence of the water retention curve, heat sink due to thermal expansion, phase change between liquid water and vapour water, and compressibility of liquid water. Numerical solutions are obtained by using the finite element method. Comparisons with existing analytical and experimental results for problems involving infiltration, drying–rewetting (hysteresis effects) and heating confirm the general validity of the present mathematical model. Coupled fields in a confined clay cylinder are also examined. It is found that consideration of absorbed liquid flow due to thermal gradients (thermo-osmosis effect) results in increased drying and shrinkage near the heated boundary. The case of a confined clay cylinder under combined heating and infiltration is also studied. Important features of coupled fields are discussed.  相似文献   

9.
High heat capacity and constant operation temperature make a 2-phase heat remover tool promising for solving high heat dissipation problems in MEMS devices. However, microscale analysis of the flow with the conventional Navier–Stokes equation is inadequate, because the non-continuum effect is important when the characteristic dimension is comparable to the local mean free path. DSMC is a direct, particle-based numerical simulation method that uses no continuum assumption. In this paper, the gas–liquid boundary effects in microchannel flow are studied using this method. Modified DSMC code is used to simulate low-speed flow—under which viscous heating produces no significant temperature change—and MD results are incorporated into the DSMC boundary condition. Steady Couette flow simulation results show that the gas–liquid boundary affects the density distribution and the temperature dependence of the slip velocity. Unsteady simulation results show that mass transfer by diffusion is faster than momentum transfer by collision.  相似文献   

10.
The purpose of this study is to analyse the combined heat and mass transfer of liquid film condensation from a small steam–air mixtures flowing downward along a vertical tube. Both liquid and gas stream are approached by two coupled laminar boundary layer. An implicit finite difference method is employed to solve the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions. The effects of a wide range of changes of three independent variables (inlet pressure, inlet Reynolds number and wall temperature) on the concentration at exit tube, local Nusselt and Sherwood numbers, film thickness, accumulated condensate rate and temperature are carefully examined. The numerical results indicate that in the case of condensing a small concentration of vapours from a mixture, the resistance to heat and mass transfer by non-condensable gas becomes very intense. The comparisons of average Nusselt number and local condensate heat transfer coefficient with the literature results are in good agreement.  相似文献   

11.
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency. The project supported by the National Natural Science Foundation of China (19889209) and Russian Foundation for Basic Research (97-02-16943)  相似文献   

12.
Heat and fluid flow characteristics of blood flow in multi-stenosis arteries in the presence of magnetic field is considered. A mathematical model of the multi-stenosis inside the arteries is introduced. A finite difference scheme is used to solve the governing equations in terms of vorticity-stream function along with their boundary conditions. The effect of magnetic field and the degree of stenosis on wall shear stress and Nusselt number is investigated. It was found that magnetic field modifies the flow patterns and increases the heat transfer rate. The severity of the stenosis affects the wall shear stress characteristics significantly. The magnetic field torque will increase the thermal boundary layer thickness and the temperature gradient in the streaming blood, and hence increasing the local Nusselt number  相似文献   

13.
The Dorodnitsyn finite element method for turbulent boundary layer flow with surface mass transfer is extended to include axisymmetric swirling internal boundary layer flow. Turbulence effects are represented by the two-layer eddy viscosity model of Cebeci and Smith1 with extensions to allow for the effect of swirl. The method is applied to duct entry flow and a 10 degree included-angle conical diffuser, and produces results in close agreement with experimental measurements with only 11 grid points across the boundary layer. The introduction of swirl (we/ue = 0.4) is found to have little effect on the axial skin friction in either a slightly favourable or adverse pressure gradient, but does cause an increase in the displacement area for an adverse pressure gradient. Surface mass transfer (blowing or suction) causes a substantial reduction (blowing) in axial skin friction and an increase in the displacement area. Both suction and the adverse pressure gradient have little influence on the circumferential velocity and shear stress components. Consequently in an adverse pressure gradient the flow direction adjacent to the wall is expected to approach the circumferential direction at some downstream location.  相似文献   

14.
Condensers serve as important components for humidification–dehumidification (HDH) desalination plants. Based on the interpenetration continua approach with volume averaging technique, a mathematical dynamic model for analyzing the heat and mass transfer within direct contact condensers with co-current or countercurrent flow arrangement was developed. It was validated against the experimental data from a small scale HDH desalination system. Comparisons including the productivities and the temperature profiles of gas, liquid, and solid phases show good agreement with the measurements. Phase change material (PCM) melting processes have little effect on water production rate for co-current flow arrangement, but the condenser packed with PCM capsules have higher water production rates than that packed with air capsules packed under given conditions. The relative humidity profile of the bulk gas shows contrary trend with the gas temperature profile. The direct contact condenser with countercurrent flow arrangement can provide much better heat and mass transfer between gas and water and produce about 16.3% more fresh water than the same condenser with co-current flow arrangement in 4 h under given conditions.  相似文献   

15.
IntroductionInrecentyears,agreatdealofattentionhasbeendirectedtowardsfullcoupledthermo_hydro_mechanicalanalysisindeformingporousmediaduetoextractionofundergroundfluids(water,petroleum ,naturalgas)inreservoir,environmentandconstructionengineering (Lewisan…  相似文献   

16.
Approximate analytic expressions for the local friction and heat transfer coefficients in a dusty laminar boundary layer are obtained and tested in the case of an incompressible carrier phase, power-law variation of the external gas flow velocity and small velocity and temperature phase disequilibrium. These expressions supplement the numerical analysis of the dusty boundary layer on a blunt body [1, 2] and the asymptotic calculation of the friction and heat transfer in a quasiequilibrium dusty gas boundary layer on a plate [3]. The combined effect of dustiness and pressure gradient on the friction and heat transfer coefficients is discussed. The results obtained can be used for the practical calculation of the friction and heat transfer in a quasiequilibrium dusty laminar boundary layer and for interpreting the corresponding experimental data. Tomsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–108, September–October, 1988.  相似文献   

17.
低渗透煤层气藏中气-水两相不稳定渗流动态分析   总被引:5,自引:4,他引:1  
刘文超  刘曰武 《力学学报》2017,49(4):828-835
针对低渗透煤层渗流问题,考虑启动压力梯度及其引起的动边界和动边界内吸附气解吸作用的渗流模型研究目前仅限于单相流,而更符合实际的气-水两相渗流动边界模型未见报道.本文综合考虑了煤层吸附气的解吸作用、气-水两相渗流、非达西渗流、地层应力敏感等影响因素,进行了低渗透煤层的气-水两相渗流模型研究.采用了试井技术中的"分相处理"方法,修正了两相渗流的综合压缩系数和流度,并基于含气饱和度呈线性递减分布的假设,建立了煤层气藏的气-水两相渗流耦合模型.该数学模型不仅可以描述由于低渗透煤层中渗流存在启动压力梯度而产生的可表征煤层有效动用范围随时间变化的移动边界,还可以描述煤层有效动用范围内吸附气的解吸现象以及吸附气解吸作用所引起的煤层含气饱和度的上升;为了提高模型精度,控制方程还保留了二次压力梯度项.采用了稳定的全隐式有限差分方法进行了模型的数值求解,并验证了数值计算方法的正确性,获得了模型关于瞬时井底压力与压力导数响应的双对数特征曲线,由此分析了各渗流参数的敏感性影响.本文研究结果可为低渗透煤层气藏开发的气-水两相流试井技术提供渗流力学的理论基础.  相似文献   

18.
A mathematical study is developed for the electro-osmotic flow of a nonNewtonian fluid in a wavy microchannel in which a Bingham viscoplastic fluid model is considered. For electric potential distributions, a Poisson-Boltzmann equation is employed in the presence of an electrical double layer(EDL). The analytical solutions of dimensionless boundary value problems are obtained with the Debye-Huckel theory, the lubrication theory, and the long wavelength approximations. The effects of the Debyelength parameter, the plug flow width, the Helmholtz-Smoluchowski velocity, and the Joule heating on the normalized temperature, the velocity, the pressure gradient, the volumetric flow rate, and the Nusselt number for heat transfer are evaluated in detail using graphs. The analysis provides important findings regarding heat transfer in electroosmotic flows through a wavy microchannel.  相似文献   

19.
低渗透多孔介质渗流动边界模型的解析与数值解   总被引:1,自引:0,他引:1  
考虑启动压力梯度的低渗透多孔介质非达西渗流模型属于强非线性动边界问题, 分别利用相似变量变换方法和基于空间坐标变换的有限差分方法, 对内边界变压力情况下、考虑启动压力梯度的一维低渗透多孔介质非达西渗流动边界模型进行了精确解析与数值求解研究. 研究结果表明:该动边界模型存在唯一的精确解析解, 且所求得的精确解析解可严格验证数值解的正确性;且当启动压力梯度值趋于零时, 非达西渗流动边界模型的精确解析解将退化为达西渗流情况下的精确解析解. 由求解结果作出的非零无因次启动压力梯度下的地层压力分布曲线表现出紧支性特点, 其与达西渗流模型的有显著不同. 因此, 研究低渗透多孔介质中非稳态渗流问题时, 应该考虑动边界的影响. 研究内容完善了低渗透多孔介质的非达西渗流力学理论, 为低渗透油气藏开发的试井解释与油藏数值模拟技术提供了理论基础.   相似文献   

20.
Conjugate mixed convection heat and mass transfer in brick drying   总被引:2,自引:0,他引:2  
 In this study, a numerical methodology for the solution of conjugate heat and mass transfer problem is presented. Fluid flow, heat and mass transfer over a rectangular brick due to transient laminar mixed convection has been numerically simulated. The coupled non-linear partial differential equations, for both gas phase and solid are solved using finite element procedure. Flow is assumed to be incompressible, two-dimensional, laminar. Analysis has been carried out at a Reynolds number of 200 with Pr = 0.71. The effect of buoyancy on the brick drying has been investigated. Velocity vectors, streamlines in the flow field and temperature and moisture contours and temperature distribution along the solid surface are presented. It is observed that there is considerable effect of buoyancy during drying. The results indicate a non-uniform drying of the brick with the leading edge drying faster than the rest of the brick. Received on 9 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号