首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymer network can imbibe copious amounts of solvent and swell, the resulting state is known as a gel. Depending on its constituents, a gel is able to deform under the influence of various external stimuli, such as temperature, pH-value and light. In this work, we investigate the photo-thermal mechanics of deformation of temperature sensitive hydrogels impregnated with light-absorbing nano-particles. The field theory of photo-thermal sensitive gels is developed by incorporating effects of photochemical heating into the thermodynamic theory of neutral and temperature sensitive hydrogels. This is achieved by considering the equilibrium thermodynamics of a swelling gel through a variational approach. The phase transition phenomenon of these gels, and the factors affecting their deformations, are studied. To facilitate the simulation of large inhomogeneous deformations subjected to geometrical constraints, a finite element model is developed using a user-defined subroutine in ABAQUS, and by modeling the gel as a hyperelastic material. This numerical approach is validated through case studies involving gels undergoing phase coexistence and buckling when exposed to irradiation of varying intensities, and as a microvalve in microfluidic application.  相似文献   

2.
In this paper, inhomogeneous deformation of a temperature-sensitive hydrogel has been studied and analyzed under arbitrary geometric and boundary conditions. We present the governing equations and equilibrium conditions of an isothermal process based on the monophase gel field theory of hydrogel via a variational approach. We have adopted and implemented an explicit form of energy for temperature-sensitive hydrogel in a three-dimensional finite element method (FEM) using a user-supply subroutine in ABAQUS. For verification purpose, a few numerical results obtained by the proposed approach are compared with existing experimental data and analytical solutions. They are all in good agreement. We also provide several examples to show the possible applications of the proposed method to explain various complex phenomena, including the bifurcation, buckling of membrane, buckling of thin film on compliant substrate and the opening and closure of flowers.  相似文献   

3.
We study volume transition phenomenon in hydrogels within the framework of Flory–Rehner thermodynamic modelling; we show that starting from different models for the Flory parameter different conclusions can be achieved, in terms of admissible coexisting equilibria of the system. In particular, with explicit reference to a one-dimensional problem we establish the ranges of both temperature and traction which allow for the coexistence of a swollen and a shrunk phase. Through consideration of an augmented Flory–Rehner free-energy, which also accounts for the gradient of volume changes, we determine the position of the interface between the coexisting phases, and capture the connection profile between them.  相似文献   

4.
The paper deals with a mathematical problem describing an exothermic chemical reaction in a diffusing substance possibly undergoing a change of phase. Global well-posedness in the classical sense is proved for the corresponding system of PDEs. Moreover, cases in which the phases are separated by sharp interphases or by transition regions are discussed. The limit case of negligible diffusion is also considered.
Sommario Si studia il problema matematico che descrive una reazione chimica esotermica in una sostanza che diffonde e puo' subire cambiamenti di fase. Si dimostra esistenza globale in senso classico del relativo sistema di equazioni alle derivate parziali e si discute la possibilita' che le fasi siano separate da una regione di transizione e non da una netta superficie di interfase. Il caso limite di assenza di diffusione e' anche brevemente esaminato.
  相似文献   

5.
A model for transient deformation of neutral hydrogels that takes into account conservation of momentum, energy and mass for the solid polymer and fluid phase is derived, nondimensionalized and analyzed. Slow- and fast-response hydrogels are studied for three cases based on the response of (i) a spherical hydrogel, (ii) a constrained hydrogel slab to a step change in temperature, and (iii) the deformation in a temperature gradient. Model predictions for case (i) are shown to agree well with experiments for swelling and shrinking. For case (ii), solvent can be seen entering at the sides and flowing into the interior and towards the corners, such that the corners undergo a faster deformation than the sides. Immersed in a temperature gradient, case (iii), the hydrogel undergoes a bending motion and reaches a curved equilibrium shape, similar to the bending motion of polyelectrolyte hydrogels subjected to an external electric field. The benefit of the scale analysis conducted here, to predict correctly, prior to numerical computations, important characteristics such as stress, osmotic pressure and deformation times, is also highlighted.  相似文献   

6.
Mechanical aspects of physisorption on elastomeric substrates are studied via a continuum model in combination with the Lennard-Jones potential. In light of the incompressibility of elastomers, it is shown that the presence of a zero-dimensional adsorbate gives rise to a distributed force on the surface of the substrate. The induced surface deformation is determined, and the adsorption force and energy which depend on the substrate stiffness are derived. The results are then used to examine mutual interaction between two like adsorbates with small spacing, showing complicated attraction and repulsion arising from elastic deformation of the substrate. The dipole and quadruple moments of an adsorbate are also calculated, and the multipole approximation is adopted to quantify the interaction when the two adsorbates are separated remotely.  相似文献   

7.
A model of solid–solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips.  相似文献   

8.
The resultant, two-dimensional thermomechanics of shells undergoing diffusionless, displacive phase transitions of martensitic type of the shell material is developed. In particular, we extend the resultant surface entropy inequality by introducing two temperature fields on the shell base surface: the referential mean temperature and its deviation, with corresponding dual fields: the referential entropy and its deviation. Additionally, several extra surface fields related to the deviation fields are introduced to assure that the resultant surface entropy inequality be direct implication of the entropy inequality of continuum thermomechanics. The corresponding constitutive equations for thermoelastic and thermoviscoelastic shells of differential type are worked out. Within this formulation of shell thermomechanics, we also derive the thermodynamic continuity condition along the curvilinear phase interface and propose the kinetic equation allowing one to determine position and quasistatic motion of the interface relative to the base surface. The theoretical model is illustrated by two axisymmetric numerical examples of stretching and bending of the circular plate undergoing phase transition within the range of small deformations.  相似文献   

9.
Shock wave induced response of the berlinite form of FePO has been investigated up to 8.5 GPa. The X-ray diffraction measurements on the shock recovered samples reveal transition to the mixture of an amorphous phase and an orthorhombic phase around 5 GPa. The proportion of the amorphous material in the recovered sample is found to decrease at higher pressure. The results are interpreted in terms of a three-level free energy diagram for the crystal to amorphous transitions. Received 26 May 1997 / Accepted 1 September 1997  相似文献   

10.
A nonlinear field theory of deformable dielectrics   总被引:2,自引:0,他引:2  
Two difficulties have long troubled the field theory of dielectric solids. First, when two electric charges are placed inside a dielectric solid, the force between them is not a measurable quantity. Second, when a dielectric solid deforms, the true electric field and true electric displacement are not work conjugates. These difficulties are circumvented in a new formulation of the theory in this paper. Imagine that each material particle in a dielectric is attached with a weight and a battery, and prescribe a field of virtual displacement and a field of virtual voltage. Associated with the virtual work done by the weights and inertia, define the nominal stress as the conjugate to the gradient of the virtual displacement. Associated with the virtual work done by the batteries, define the nominal electric displacement as the conjugate to the gradient of virtual voltage. The approach does not start with Newton's laws of mechanics and Maxwell-Faraday theory of electrostatics, but produces them as consequences. The definitions lead to familiar and decoupled field equations. Electromechanical coupling enters the theory through material laws. In the limiting case of a fluid dielectric, the theory recovers the Maxwell stress. The approach is developed for finite deformation, and is applicable to both elastic and inelastic dielectrics. As applications of the theory, we discuss material laws for elastic dielectrics, and study infinitesimal fields superimposed upon a given field, including phenomena such as vibration, wave propagation, and bifurcation.  相似文献   

11.
It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-λ shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.  相似文献   

12.
Thermodynamically consistent, three-dimensional (3D) phase field approach (PFA) for coupled multivariant martensitic transformations (PTs), including cyclic PTs, variant–variant transformations (i.e., twinning), and dislocation evolution is developed at large strains. One of our key points is in the justification of the multiplicative decomposition of the deformation gradient into elastic, transformational, and plastic parts. The plastic part includes four mechanisms: dislocation motion in martensite along slip systems of martensite and slip systems of austenite inherited during PT and dislocation motion in austenite along slip systems of austenite and slip systems of martensite inherited during reverse PT. The plastic part of the velocity gradient for all these mechanisms is defined in the crystal lattice of the austenite utilizing just slip systems of austenite and inherited slip systems of martensite, and just two corresponding types of order parameters. The explicit expressions for the Helmholtz free energy and the transformation and plastic deformation gradients are presented to satisfy the formulated conditions related to homogeneous thermodynamic equilibrium states of crystal lattice and their instabilities. In particular, they result in a constant (i.e., stress- and temperature-independent) transformation deformation gradient and Burgers vectors. Thermodynamic treatment resulted in the determination of the driving forces for change of the order parameters for PTs and dislocations. It also determined the boundary conditions for the order parameters that include a variation of the surface energy during PT and exit of dislocations. Ginzburg–Landau equations for dislocations include variation of properties during PTs, which in turn produces additional contributions from dislocations to the Ginzburg–Landau equations for PTs. A complete system of coupled PFA and mechanics equations is presented. A similar theory can be developed for PFA to dislocations and other PTs, like reconstructive PTs and diffusive PTs described by the Cahn–Hilliard equation, as well as twinning and grain boundaries evolution.  相似文献   

13.
A pathway tree is constructed by recursively duplicating a single reconstructive martensitic transformation path with respect to lattice symmetries and point-group rotations. An energy potential built on this pathway is implemented in a phase-field technique in large strain framework, with the transformational strain as the order parameter. A specific splitting between non-dissipative elastic behavior and the dissipative evolution of the order parameter allows for the modeling of acoustic waves during rapid transformations. A simple toy-model transition from hexa- to square-lattice successfully demonstrates the possibility to model reconstructive martensitic transformations for a large number of variants (more than one hundred). Pure traction applied to our toy-model shows that variants can nucleate into previously created variants, with a hierarchical nucleation of variants spanning over five levels of transformation.  相似文献   

14.
A numerical investigation of mixing processes between an injected fuel (an n-alkane) and a chamber inert gas (nitrogen) was carried out for high-pressure fuel injection. The objective is to determine conditions for the coexistence of both liquid and gas phases under the typical ambient conditions encountered in diesel engines. A phenomenological investigation was built by coupling phase stability analysis with the energy conservation equation. Phase changes (including separation and combination) are predicted to occur so as to yield the lowest Gibbs free energy. It is also shown that predicted states without considering phase transitions can be very different from the corresponding thermodynamically correct states. By comparing four n-alkane/nitrogen mixtures it is shown that the lower limit of the two-phase region occurs at similar temperatures. However, heavy n-alkane/nitrogen mixtures have a larger upper limit, and phase separation occurs at higher temperatures. The present model predicts the existence of multiple phases locally in the dense spray jet under high temperature and pressure ambient conditions due to the significant reduction of the mixture temperature caused by vaporization and cooling.  相似文献   

15.
In this paper, we combine experiments and numerical simulations to investigate the large deformation mechanics of periodically patterned cylindrical structures under uniaxial compression. Focusing on cylinders with a square array of circular pores, we show that their buckling behavior is not only controlled by the porosity (as for the case of the corresponding infinitely large planar structures), but also by the length and thickness of the shell and the number of pores along the full circumference. While infinitely long cylindrical shells only support long wavelength (global) modes, by reducing the length and tuning the thickness, short wavelength (local) modes can be observed. Furthermore, frustrated short wavelength modes are triggered when a local instability is critical, but the buckling pattern is not compatible with the number of pores along the circumference.  相似文献   

16.
This paper studies the mechanics of soft active materials where the actuation is generated due to the formation of phases that are stress-free at the moment of their creation and therefore experience no deformation in the associated configuration. Phase formation is a continuous time-dependent process, which results in individual phases forming at different times and in different configurations of the material body, and thus it is coupled with mechanical deformation. Subsequent deformation of the material body results in individual phases experiencing different states of deformation and the overall material response results from the combined responses of the individual phases weighted by their respective volume fractions. Therefore, a great challenge in modeling the mechanics of soft active materials with evolving phases is to track the deformation and evolution of individual phases formed at different times and in different configurations. In this paper, a generalized one-dimensional model framework is presented to address this challenge. However, this model proves to be computationally inefficient. In response, an effective phase model is developed that tracks the combined deformation histories of new phases through a single, effective deformation. Both the general and effective phase models are evaluated with two fundamentally distinct phase evolution rules for three common mechanical problems: extension, stress relaxation, and creep. The first evolution rule represents a discrete transition from one phase to another while the second rule corresponds to a general transition from several phases into one phase. The effective phase model demonstrates excellent agreement with the generalized theory for all three mechanical problems considered under both types of evolution rules.  相似文献   

17.
We simulate the phase separation of a binary mixture that is deeply quenched into the unstable range of its phase diagram. The mixture is described through the diffuse-interface model and the governing equations are integrated in 2D and 3D in a periodic box and in a channel using a pseudo-spectral method. Spinodal decomposition patterns for critical and off-critical mixtures are studied, revealing the scaling laws of the characteristic lengthscale and composition of single-phase microdomains, together with their dependence on the Peclet number. Comparison between 2D and 3D results reveals that 2D simulations capture, even quantitatively, the main features of the phenomenon. However, while the agreement between 2D and 3D simulations is excellent when the mixture is confined in a periodic box, it appears to be less pronounced in a channel-like geometry.  相似文献   

18.
On hydrodynamic instabilities,chaos and phase transition   总被引:2,自引:0,他引:2  
Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition.  相似文献   

19.
A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg–Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics, and kinetics of dislocations at large strains are simplified for small strains and rotations, as well.  相似文献   

20.
Summary In this work, equations of the kinetics and kinematics are developed for heterogeneous materials containing inelastic discontinuities with moving boundaries. From the derived free energy and the power of external forces one obtains the driving force acting on the moving boundary. Introducing the interface operators and some hypothesis on inelastic fields, one gets the driving force for the formation of an ellipsoidal domain. The theoretical model is illustrated by the derivation of nucleation and growth conditions of a martensitic plate inside an inhomogeneous plastic strain field. The obtained results are combined with a study of the kinetics and kinematics to derive the constitutive equation of an austenitic single crystal, from which the overall behavior of polycrystalline TRIP steels is deduced using the self-consistent scale-transition method. Comparison with experimental data shows a good agreement. Received 7 May 1999; accepted for publication 14 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号