首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell’s electrodynamic equations. We investigate Bloch–Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon–polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide.  相似文献   

2.
An algorithm for controlling the stop bands for elastic Bloch-Floquet waves within a periodic structure is proposed. Explicit asymptotic estimates of frequencies of translational and rotational standing waves, together with the numerical estimates of the stop band frequencies, are given. Thermal pre-stress is introduced and used to control the position of the stop bands on the dispersion diagram.  相似文献   

3.
Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein–Gulyaev (B–G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B–G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B–G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B–G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE–PM composites and acoustic wave devices.  相似文献   

4.
《Physics letters. A》2020,384(13):126253
This letter is concerned with acoustic wave propagation and transmission in acoustic waveguides with periodically grafted detuned Helmholtz resonators. The interplay of local resonances and Bragg band gaps in such periodic systems is examined. It is shown that, when the resonant frequencies of the resonators are tuned close to a Bragg band gap, the behavior of the Bragg band gap can be affected dramatically. Particularly, by introducing appropriately tuned resonators, the bandwidth of a Bragg band gap can be reduced to zero, leading to a very narrow pass band with great wave attenuation performance near both band edges. The band formation mechanisms of such periodic waveguides are further examined, providing explicit formulae to locate the band edge frequencies of all the band gaps, as well as the conditions to achieve very narrow pass bands in such periodic waveguides.  相似文献   

5.
Sound transmission through gas-solid interfaces is usually very weak because of the large contrast in wave impedances at the interface. Here, it is shown that diffraction effects can lead to a dramatic increase in the transparency of gas-solid interfaces at low frequencies, resulting in the bulk of energy emitted by compact sources within a solid being radiated into a gas. The anomalous transparency is made possible by power fluxes in evanescent body waves and by excitation of interface waves. Sound transmission into gas is found to be highly sensitive to absorption of elastic waves within a solid.  相似文献   

6.
We analyze thickness-shear vibration of an axially poled circular cylindrical tube with unattached electrodes and air gaps. Both free and electrically forced vibrations are studied. Exact solutions are obtained from the equations of linear piezoelectricity. Resonant frequencies and the impedance of the transducer are calculated from the solution. Results show that the resonant frequencies are sensitive to the dimensions of the air gaps when the gaps are thin. The impedance depends strongly on the air gaps. Supported by the National Natural Science Foundation of China (Grant No. 50778179)  相似文献   

7.
We propose hybrid phononic-crystal plates which are composed of periodic stepped pillars and periodic holes to lower and widen acoustic band gaps. The acoustic waves scattered simultaneously by the pillars and holes in a relevant frequency range can generate low and wide acoustic forbidden bands. We introduce an alternative double-sided arrangement of the periodic stepped pillars for an enlarged pillars’ head diameter in the hybrid structure and optimize the hole diameter to further lower and widen the acoustic band gaps. The lowering and widening effects are simultaneously achieved by reducing the frequencies of locally resonant pillar modes and prohibiting suitable frequency bands of propagating plate modes.  相似文献   

8.
Liu H  Kuang ZB  Cai ZM 《Ultrasonics》2003,41(5):397-405
Based on the theories of nonlinear continuum mechanics, piezoelectricity and elastic waves in solids, theoretical analysis of Bleustein-Gulyaev surface acoustic wave propagation in a prestressed layered piezoelectric structure are described. Numerical calculations are performed for the case that the layer and the substrate are identical LiNbO(3) except that they are polarized in opposite directions. It is found that an almost linear behavior of the relative change in phase velocity versus the initial stress is obtained for both surface electrically free and shorted cases. Potential applications in the design of acoustic wave devices are suggested.  相似文献   

9.
二维点缺陷正方光子晶体的微腔结构   总被引:2,自引:2,他引:0       下载免费PDF全文
通过平面波展开法对由Al2O3介质棒在空气背景介质中构成含有点缺陷的二维正方光子晶体微腔结构进行研究,计算得出缺陷态能带以及缺陷态模场分布。缺陷模对应的电磁波波长为470~476nm。对该微腔结构的品质因数的求解,得出缺陷态光谱曲线。在光谱曲线中,随着传输波长的增大,将产生几个峰值,并且在475nm处的波动最为明显,反映出在475nm附近的电磁波段在缺陷处的光强较大。进一步利用全矢量等效折射率法研究该结构缺陷模频率的稳定性,得出等效折射率的变化曲线。从等效折射率变化曲线可以看出,当传输波长达到475nm时,该结构已经达到稳定传输的区域。含缺陷模的二维光子晶体微腔结构在光子晶体发光二极管以及高阈值半导体激光器等方面有着重要的应用价值。  相似文献   

10.
The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11× 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.  相似文献   

11.
Based on the transfer matrix method (TMM) and Bloch theory, the interaction of elastic waves (normal incidence) with 1D phononic crystal had been studied. The transfer matrix method was obtained for both longitudinal and transverse waves by applying the continuity conditions between the consecutive unit cells. Dispersion relations are calculated and plotted for both binary and ternary structures. Also we have investigated the corresponding effects on the band gaps values for the two types of phononic crystals. Furthermore, it can be observed that the complete band gaps are located in the common frequency stop-band regions. Numerical simulations are performed to investigate the effect of different thickness ratios inside each unit cell on the band gap values, as well as unit cells thickness on the central band gap frequency. These phononic band gap materials can be used as a filter for elastic waves at different frequencies values.  相似文献   

12.
Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency: due to internal diffraction, wide angular ranges of strongly reduced diffuse transmission coincide with photonic stop bands, while enhancements occur for directions outside stop gaps. We quantitatively explain the experiment with a model incorporating diffusion and band structure on equal footing. We predict that in the event of a photonic band gap, diffuse light at frequencies near band gap edges can exit only along isolated directions. Angle-resolved diffuse transmission appears to be the photonic equivalent of angle-resolved photoelectron spectroscopy.  相似文献   

13.
We study the transverse elastic waves propagating in 6-mm class hexagonal crystals forming Fibonacci superlattices. These are formed by repetitions of CdS and ZnO slabs in A and B constituent blocks following the Fibonacci sequence. We study the periodic superlattices formed by the infinite repetition of a given Fibonacci generation together with the finite Fibonacci generations having stress-free surfaces, in order to compare the effects introduced by the different boundary conditions. We have also considered the effects of piezoelectricity when all the interfaces are metallized and kept at a fixed potential. We use the surface Green function matching method forNnonequivalent interfaces to obtain the dispersion relations and the density of states of these systems. We have studied the influence of the increasing order of the Fibonacci generations on the dispersion relation of the transverse elastic modes. The Fibonacci spectrum is clearly seen even for low-order Fibonacci generations and is almost not modified by the piezoelectric coupling when the interfaces are metallized.  相似文献   

14.
15.
《Physics letters. A》2019,383(17):2106-2109
We theoretically study the interface states of liquid surface waves propagating over the heterojunctions formed by a bottom with one-dimensional periodic undulations. By considering the periodic structure as a homogeneous one, our systematic study shows that the signs of the effective depth and gravitational acceleration are opposite within the band gaps whether the structure is symmetric or not. Those effective parameters can be used to predict the interface states which could amplify the amplitudes of liquid surface waves. These phenomena provide new opportunities to control the localization of water-wave energy.  相似文献   

16.
Using a semianalytical solution to the problem of wave excitation in an elastically supported one-dimensional waveguide with a system of point obstacles, we analyze the relation between the observed effects of blocking-transmission and the discrete spectrum point distribution in the complex frequency plane. We check the assumption, stemming from earlier numerical analysis for two-dimensional elastic waveguides with extended obstacles, on whether the occurrence of transmission frequencies in the blocking range is related to the presence of close-to-the-real-axis points of a discrete spectrum. The number of such spectral points increases in proportion to the number of obstacles, giving in the limit continuous transmission bands described by the Bloch-Floquet theory for infinite periodic structures.  相似文献   

17.
Alaka Das  Krishna Kumar 《Pramana》2008,71(3):545-557
The effects of time-periodic forcing in a few-mode model for zero-Prandtl-number convection with rigid body rotation is investigated. The time-periodic modulation of the rotation rate about the vertical axis and gravity modulation are considered separately. In the presence of periodic variation of the rotation rate, the model shows modulated waves with a band of frequencies. The increase in the external forcing amplitude widens the frequency band of the modulated waves, which ultimately leads to temporally chaotic waves. The gravity modulation, on the other hand, with small frequencies, destroys the quasiperiodic waves at the onset and leads to chaos through intermittency. The spectral power density shows more power to a band of frequencies in the case of periodic modulation of the rotation rate. In the case of externally imposed vertical vibration, the spectral density has more power at lower frequencies. The two types of forcing show different routes to chaos.   相似文献   

18.
Free plane wave propagation in infinitely long periodic elastic structures with and without heavy fluid loading is considered. The structures comprise continuous elements of two different types connected in an alternating sequence. In the absence of fluid loading, an exact solution which describes wave motion in each unboundedly extended element is obtained analytically as a superposition of all propagating and evanescent waves, continuity conditions at the interfaces between elements are formulated and standard Floquet theory is applied to set up a characteristic determinant. An efficient algorithm to compute Bloch parameters (propagation constants) as a function of the excitation frequency is suggested and the location of band gaps is studied as a function of non-dimensional parameters of the structure's composition. In the case of heavy fluid loading, an infinitely large number of propagating or evanescent waves exist in each unboundedly extended elasto-acoustic element of a periodic structure. Wave motion in each element is then presented in the form of a modal decomposition with a finite number of terms retained in these expansions and the accuracy of such an approximation is assessed. A generalized algorithm is used to compute Bloch parameters for a periodic structure with heavy fluid loading as a function of the excitation frequency and, similarly to the previous case, the location of band gaps is studied.  相似文献   

19.
We consider the interaction of a polarized electromagnetic wave in a magnetically ordered crystal plate surrounded by an isotropic ambient at the normal incidence. The crystalline medium of the plate is specified by the general non-symmetric permittivity tensor. The results are expressed in terms of the transmission and reflection matrices which relate the electric fields of the incident wave to those of transmitted and reflected waves. Their applications are illustrated by examples of an isotropic plate magnetized normal to the interface, a cubic crystal magnetized parallel to the interface and an orthorhombic crystal magnetized along the axis normal to the interface. The effect of the reflection from the interfaces and the interference effect are included. The paper treats the reflection at an interface between an isotropic ambient and an absorbing magnetic crystal at small non-zero angles of incidence. The general reflection matrix is applied to the determination of the magneto-optical effects quadratic in magnetization.  相似文献   

20.
In this paper a semi-analytical method is proposed to investigate the transmission band gaps of Lamb waves through repetitive structures in a waveguide. For a unit cell the scattering matrix is obtained by the Lamb mode matching technique at each artificially sliced interface and then substituted into the Bloch theorem to solve the eigenproblem incurred by cell repetition. The method is implemented on a ribbed plate. The band gaps in the dispersion curves are confirmed by the dips of Lamb wave transmission coefficients, and attributed to the coupled vibrations of Lamb modes in different sliced sections of the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号