首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter μ. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter ε, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting ε=0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (ε?1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter μ. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).  相似文献   

2.
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n). The shallow shell theory (which is more accurate at higher frequencies) is used to model the cylinder. Initially, the in vacuo shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high- and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter μ, we find solutions for the limiting cases of small and large μ. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases, Poisson's ratio ν is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders (n).  相似文献   

3.
The transmission of flexural type waves through various discontinuities in the walls of cylindrical shells is investigated. Theoretical curves of transmission loss are obtained for different circumferential wavenumbers and wave types, as functions of frequency. Material stiffness and extensional phase speed, together with the relationship between radial vibration amplitude and total wave power of propagation, are important factors which are found to strongly influence wave transmission through discontinuities. Some practical results useful for predicting the performance of typical pipe isolators (in vacuo) are obtained.  相似文献   

4.
The dispersion characteristics of a pipe offer a way to gain physical insight into its dynamic behaviour. Whilst these can be found in the literature they are generally calculated by numerically solving the characteristic equation. In this paper, a simplified characteristic equation of an in vacuo pipe is presented and from this analytical expressions for the wavenumbers for the circumferential modes below the ring frequency are derived. It is shown that before waves cut on and propagate, they change from being decaying standing waves at low frequencies to being nearfield waves. A simplified expression is also determined for the cut on frequencies of the n?2 circumferential modes. Simulations are presented to validate the results against some established theories of pipe vibration.  相似文献   

5.
The free vibration of circular cylindrical thin shells, made up of uniform layers of isotropic or specially orthotropic materials, is studied using point collocation method and employing spline function approximations. The equations of motion for the shell are derived by extending Love's first approximation theory. Assuming the solution in a separable form a system of coupled differential equations, in the longitudinal, circumferential and transverse displacement functions, is obtained. These functions are approximated by Bickley-type splines of suitable orders. The process of point collocation with suitable boundary conditions results in a generalized eigenvalue problem from which the values of a frequency parameter and the corresponding mode shapes of vibration, for specified values of the other parameters, are obtained. Two types of boundary conditions and four types of layers are considered. The effect of neglecting the coupling between the flexural and extensional displacements is analysed. The influences of the relative layer thickness, a length parameter and a total thickness parameter on the frequencies are studied. Both axisymmetric and asymmetric vibrations are investigated. The effect of the circumferential node number on the vibrational behaviour of the shell is also analysed.  相似文献   

6.
In this paper, the vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure are studied. At first, the basic relations have been obtained for orthotropic truncated conical shells, Young's moduli and density of which vary continuously in the thickness direction. By applying the Galerkin method to the foregoing equations, the buckling pressure and frequency parameter of truncated conical shells are obtained from these equations. Finally, carrying out some computations, the effects of the variations of conical shell characteristics, the effects of the non-homogeneity and the orthotropy on the critical dimensionless hydrostatic pressure and lowest dimensionless frequency parameter have been studied, when Young's moduli and density vary together and separately. The results are presented in tables, figures and compared with other works.  相似文献   

7.
Cylindrical shells composed of concentric layers may be designed to affect the way that elastic waves are generated and propagated, particularly when some layers are anisotropic. To aid the design process, the present work develops a wave based analysis of the Green's function for a layered cylindrical shell in which the response is given as a sum of waves propagating in the axial coordinate. The analysis assumes linear Hookean materials for each layer. It uses finite element discretizations in the radial coordinate and Fourier series expansions in the circumferential coordinate, leading to linear equations in the axial wavenumber domain that relate shell displacements and forces. Inversion to the axial domain is accomplished via a state-space formulation that is evaluated using residue integration. The resulting expression for the Green's function for each circumferential harmonic is a summation over the natural waves of the shell. The finite element discretization in the radial direction allows the approach to be used for arbitrarily thick shells. The approach is benchmarked to results from an isotropic shell and numerical examples are given for a shell composed of a fiber-reinforced material. The numerical examples illustrate the effect of fiber orientation on the Green's function.  相似文献   

8.
仝博  李永清  朱锡  张焱冰 《声学学报》2020,45(3):415-424
为了获得任意角度铺层的多层复合材料圆柱壳的自由振动准确解,在三维弹性理论的基础上,结合分层理论和状态空间法,建立横向位移和应力的传递矩阵,轴向和环向位移采用双螺旋模式的位移函数,对任意角度铺层复合材料圆柱壳简支边界条件下的自由振动进行了理论推导,得到了自由振动方程的精确形式。与文献理论解和有限元计算结果对比,结果表明,关注频率在2倍的环频率以下时,薄壳的固有频率计算精度能控制在1%以内,厚壳的固有频率计算精度能控制在2%以内。对于厚壳的计算可将壳体沿厚度方向划分为多层来处理,这样能有效提高计算精度。计算分析了铺层角对壳体固有频率的影响,环向模态数较低时,固有频率随着铺层角的增加呈抛物线变化趋势;环向模态数较高时,固有频率随着铺层角的增大单调递增。该理论方法同样适用于均质各向同性壳和正交各向异性圆柱壳。   相似文献   

9.

Using the Debye and Debye-type potentials, two representations of the vector potential of the displacement vector are considered for isotropic cylindrical bars and shells. With this approach, characteristic equations are obtained for the wavenumbers of three-dimensional flexural waves propagating in the aforementioned bodies; the phase velocities of such waves are calculated.

  相似文献   

10.
In ultrasonic nondestructive inspection of large-diameter pipes and curved plate, longitudinal cracks are detected more efficiently by using guided circumferential waves. In the present, the study of guided circumferential waves and their application in detecting longitudinal defect were relative adequate when pipe material is isotropic. Based on linear three-dimensional elasticity, an orthogonal polynomial series expansions approach is used for determining the guided circumferential waves dispersion curves in homogeneous infinitely long orthotropic hollow cylinders. Results are compared with those published earlier and with the finite element simulation to check up the accuracy and range of applicability of this polynomial approach. Through the analysis of the displacements distributions and finite element simulation, the mode conversion of guided circumferential waves by end-reflection in cylindrical curved plate is discovered.  相似文献   

11.
Starting with Love type equations of motion for orthotropic circular cylindrical shells, the theory is simplified by assumptions similar to those in the Donnell-Mushtari-Vlasov development for isotropic shells. Closed form solutions for simply supported cases are then obtained. Results of two example cases are compared with finite element results and are shown to agree well. It is argued that this simplified approach allows easy assessment of the influence of design parameter changes.  相似文献   

12.
A time-harmonic line force is applied to an infinite elastic cylindrical shell immersed in compressible fluid. The force may also have axial harmonic dependence. The formal solution for the shell displacement is obtained as the sum of circumferential harmonics and evaluated in the asymptotic limit of heavy exterior fluid-loading. The resulting asymptotic expressions for the elements of the receptance matrix, either at the line of application of the force, or elsewhere on the shell surface, are simple trigonometric functions of the shell and fluid parameters, and show excellent agreement with numerical evaluation of the circumferential harmonic series over a wide frequency range.  相似文献   

13.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

14.
A mathematical model is presented for the transmission of airborne noise through the walls of an orthotropic cylindrical shell. Parameters were varied to see how orthotropicity affected noise transmission. When compared to that for an isotropic shell, the cylinder transmission loss was found to be quite sensitive to the ratio of circumferential to axial modulus of elasticity. A modulus ratio greater than unity appears to enhance transmission loss in the mass-controlled region, while a ratio less than unity degrades it. Below the ring frequency, the trends appear to be reversed. The cylinder transmission loss appears to be relatively insensitive to changes in the shear modulus.  相似文献   

15.
A method is developed for the static stress and deformation analysis of axisymmetric shells under axisymmetric loading by reduction of the shell to ring sections. In particular, the wall thickness of the shell may vary and the method is applicable to the analysis of shells with irregular meridional geometry. Explicit expressions for the influence coefficients for each ring element are derived. In the development of these expressions, exact evaluation of stresses in the circumferential direction of the ring is used. The distribution of stresses in the meridional direction of the ring element is assumed to be linear with each element. By using the derived influence coefficients, the unknown forces at the junctures of the ring elements are found by the standard flexibility method of indeterminate structural analysis. Subsequently, the displacements and internal stresses are determined. Example solutions for a flat circular plate under transverse loading and for a cylindrical shell under a boundary edge loading show excellent agreement with solutions found by solving the governing differential equations.  相似文献   

16.
Linear thermal buckling and free vibration analysis are presented for functionally graded cylindrical shells with clamped-clamped boundary condition based on temperature-dependent material properties. The material properties of functionally graded materials (FGM) shell are assumed to vary smoothly and continuously across the thickness. With high-temperature specified on the inner surface of the FGM shell and outer surface at ambient temperature, 1D heat conduction equation along the thickness of the shell is applied to determine the temperature distribution; thereby, the material properties based on temperature distribution are made available for thermal buckling and free vibration analysis. First-order shear deformation theory along with Fourier series expansion of the displacement variables in the circumferential direction are used to model the FGM shell. Numerical studies involved the understanding of the influence of the power-law index, r/h and l/r ratios on the critical buckling temperature. Free vibration studies of FGM shells under elevated temperature show that the fall in natural frequency is very drastic for the mode corresponding to the lowest natural frequency when compared to the lowest buckling temperature mode.  相似文献   

17.
The derivation of the general equations of motion for the analysis of laminated cylindrical shells consisting of layers of orthotropic laminae, and the equations of motion for rotationally symmetric deformation made previously by the authors are used in this study. The three coupled differential equations governing the rotationally symmetric motion of each layer of a cylindrical shell with rotary inertia neglected are replaced by another set of three differential equations where the solutions can be obtained systematically. General solutions for laminated cylindrical shells of finite length are presented. Coupled frequencies and several mode shapes for a fixed-end cylindrical shell with one and two orthotropic layers of various geometric dimensions are calculated for illustrative purposes. The results based on the present analysis for a single layered shell are compared to the results obtained according to the classical analysis.  相似文献   

18.
The approach developed in the present paper is applied for the coupled-vibration analysis of a cantilever cylindrical shell partially submerged in a fluid with a continuous, simply connected and non-convex domain. The shell is partially and concentrically submerged in a rigid cylindrical container partially filled by a fluid which is assumed to be incompressible and inviscid. The velocity potential for fluid motion is formulated in terms of eigenfunction expansions using the collocation method. The interaction between the fluid and the structure takes into account by using the compatibility requirement along the wet surface of the shell and the Rayleigh-Ritz method is used to calculate natural frequencies and modes of the coupled system. The validity of the developed theoretical method is verified by comparing the results with those obtained from the finite element analysis. Furthermore, the effects of submergence depth, radial distance between shell and container, and circumferential wavenumbers on the natural frequencies and modes of the coupled system are investigated.  相似文献   

19.
In this paper, the buckling behavior and critical axial pressure of double-walled carbon nanotubes (DWCNTs) with surrounding elastic medium are investigated. A double-shell (circular cylindrical shell) model is presented and the effects of surrounding elastic medium on the outer tube and the van der Waals forces between two adjacent tubes are taken into account. The analysis and the numerical solution method are based on the classical theory of plates and shells and the Galerkin method. Equations are derived for the critical axial forces and pressures of DWCNTs; the critical axial forces and pressures are calculated for different axial half sine wavenumbers and circumferential sine wavenumbers and compared with those for single-walled carbon nanotubes (SWCNTs).Results indicate that the critical axial force of a DWCNT is higher than that of an SWCNT, but the critical axial pressure of a DWCNT is lower than the critical axial pressure of a SWCNT. Although the critical axial force of a DWCNT decreases as the axial half sine wavenumbers increase, it rises as the circumferential sine wavenumbers increase.  相似文献   

20.
The dynamic characteristics (i.e., natural frequencies and mode shapes) of a partially filled and/or submerged, horizontal cylindrical shell are examined. In this investigation, it is assumed that the fluid is ideal, and fluid forces are associated with inertial effects only: namely, the fluid pressure on the wetted surface of the structure is in phase with the structural acceleration. The in vacuo dynamic characteristics of the cylindrical shell are obtained using standard finite element software. In the “wet” part of the analysis, it is assumed that the shell structure preserves its in vacuo mode shapes when in contact with the contained and/or surrounding fluid and that each mode shape gives rise to a corresponding surface pressure distribution of the shell. The fluid-structure interaction effects are calculated in terms of generalized added masses, using a boundary integral equation method together with the method of images in order to impose an appropriate boundary condition on the free surface. To assess the influence of the contained and/or surrounding fluid on the dynamic behaviour of the shell structure, the wet natural frequencies and associated mode shapes were calculated and compared with available experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号