首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A response sensitivity-based approach is presented for identifying the local damages in isotropic plate structures from the measured structural dynamic responses. The local damage is simulated by a reduction in the elemental Young's modulus of the plate. In the forward analysis, the forced vibration responses of the plate under external force are obtained from Newmark direct integration. In the inverse analysis, a response sensitivity-based finite element model updating approach is used to identify local damages of the plate in time domain. The damage identification results are obtained iteratively with the penalty function method with Tikhonov regularization using the measured structural dynamic responses. Two numerical examples are investigated to illustrate the correctness and efficiency of the proposed method. Both single damage and multiple damages cases are studied. The effects of measurement noise and measurement point on the identification results are investigated. Studies in this paper indicate that the proposed method is efficient and robust for both single and multiple damages for plate structures. Good identified results can be obtained from the short time histories of a few number of measurement points.  相似文献   

2.
This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles (BEV). The focus lies on the requirements for a realistic replication of the mechanical environments in a testing laboratory. Especially the analysis on global bending transfer functions and local corner bending coherence indicate that neither a fully stiff fixation of the battery nor a completely independent movement on the four corners yields a realistic and conservative test scenario. The contribution will further show what implication these findings have on future vibration & shock testing equipment for large traction batteries. Additionally, it will cover an outlook on how vibration behavior of highly integrated approaches (cell2car) changes the mechanical loads on the cells.  相似文献   

3.
TV-holography is a well-known tool for vibration analysis. Using the so-called time-average method, this technique allows to record interferograms showing the mode shapes of a structure submitted to vibration excitation and is currently used for modal identification.Within the frames of a BRITE-EURAM program called vibration intensity processing using full-field multi-pulse laser technique (VIP), a TV-holography equipment has been developed, working with a 25 Hz pulsed laser and allowing easy on-site measurements. A measurement procedure has been defined and a specific data processing has been developed for the determination of structural intensity fields, which give transfer path of the vibration energy within a structure.The measurement of these quantities is possible the using classical means (accelerometers, stress gauges, etc.) but the data processing is complex and require a lot of accurate sensors because it is based on spatial derivatives of high order. The optical techniques (laser vibrometry, holography, etc.) are more suited for that purpose because of the high density of measuring points and because of the well-known advantages of these methods: reduced measurement time and no modification of the mass parameters of the structure as it is the case when using contact sensors.Different kinds of output data are then given: operational deflection shape, amplitude and phase, structural intensity field and its divergence through a further step of data processing. The complete procedure with the associated data processing has been tested (for various configurations of excitation and damping) first on a clamped plate, then on a cylinder and at the end on several industrial components.This paper describes the general measurement procedure and the equipment used. The data processing is also presented and various measurement results are shown. The conclusion gives the main advantages and limitations of the method and evaluates the application possibilities.  相似文献   

4.
The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of “recessive” modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for “dominant” modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.  相似文献   

5.
In this paper, internal resonance and nonlinear dynamics of regenerative chatter in milling process is investigated. An extended dynamic model of the peripheral milling process including both structural and cutting force nonlinearities is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. In the presence of the large vibration amplitudes, the loss of contact effect is included in this model. Using the multiple-scales approach, analytical approximate response of the delayed nonlinear system is obtained. Considering the internal resonance dynamics (i.e. mode coupling), the energy transfer between the coupled xy modes is studied. The results show that during regenerative chatter under specific cutting conditions, one mode can decay. Furthermore, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of one mode (direction) in which accurate surface finish is required. Under the steady-state motion, jump phenomenon is investigated for the process with regenerative chatter under various cutting conditions. Moreover, the effects of structural and cutting force nonlinearities on the stability lobes diagram of the process are investigated.  相似文献   

6.
The effect of heating on the spatial orientation and concentration of the components of dicarbocyanine dye layers on a glass substrate is studied experimentally. Layers of two types differing in the spatial orientation angles of all their components (monomeric all-trans and β-mono-cis isomers, dimers, and J aggregates) are considered. It is shown that storing of samples at temperatures of 150–200°C causes partial thermal destruction but does not change the absorption spectra of the molecular components. Heating of the layer of the first type changes neither the orientation nor the relative concentration of the components. Heating of the layer of the second type leads to irreversible changes in the orientation angles of all the molecular components and causes the β-mono-cis isomer and the dimer to transform into the all-trans isomer and the J aggregate. The dependences of the orientation angle on the heating time have the form of saturating functions. The rate of variation of the orientation angle and its limiting value in the saturation region increase with increasing temperature of heating. At high temperatures, the layer of the second type transforms completely into the layer with the first type of spatial orientation. A mechanism of the changes in the angles of the spatial orientation of the layer components, which includes the stages of thermal isomerization and reorientation of each molecular component, as well as rearrangement of its environment, is proposed. Energetic and kinetic parameters of all the stages of layer reconstruction satisfying the experimental results obtained in the region from 150 to 230°C are determined.  相似文献   

7.
The objective of this paper is to highlight gaps of information regarding mechanisms of vascular, neurological, and musculo-skeletal damage caused by vibration. Also addressed is evidence that high noise level may act synergistically to the development of vibration syndrome of the hand and arm. Areas of research currently active in psychophysical and neurophysiological investigations to increase our understanding of tactile and spatial discrimination are discussed. Although the importance of sensory loss or "fine touch" is understood, there is neither a proven objective scientific test with which the syndrome can be diagnosed nor is there a scale of damage assessment. Determining the exact role of the central nervous system in assessing damage from vibration is difficult in view of nonspecific symptoms reported from eastern Europe and from Japan. To complicate matters still further, there is the possibility that repeated, rapid mechanical movements of the hand and arm associated with handling heavy tools produce carpal tunnel syndrome but that the injury is not directly attributed to vibration. Therefore, it follows that there could exist an element of carpal tunnel syndrome in many vibration syndrome cases.  相似文献   

8.
This work considers the effect that damage has upon the higher order derivatives of mode shapes of structures having primarily beam-like vibration. Via numerical investigations, the sensitivity of various damage related parameters in inducing changes in these higher order modal derivatives is determined, leading to a more complete understanding of what factors make the most contribution to significant changes in these derivatives. It is concluded that higher order mode shape derivatives (e.g., modal curvature, third derivative, and fourth derivative) are better indicators of damage than the mode shapes. Three distinct types of response for the damage-induced higher order derivative discontinuities are identified as three key parameters (the mass loss, stiffness loss, and damage radius scale) vary. From this, formal approximations are obtained for the expected forms of the higher order derivative discontinuities based upon the underlying behavior predicted by a simple relation among these three parameters. These approximations are checked with numerical simulations, and an excellent level of agreement is observed under appropriate conditions. Finally, the potential of these higher order derivative changes for indicating the presence and location of damage in a global setting is examined.  相似文献   

9.
The problem of detecting local/distributed change of stiffness in bridge structures using ambient vibration data is considered. The vibration induced by a vehicle moving on the bridge is taken to be the excitation source. A validated finite element model for the bridge structure in its undamaged state is assumed to be available. Alterations to be made to this initial model, to reflect the changes in bridge behaviour due to occurrence of damage, are determined using a time-domain approach. The study takes into account complicating features arising out of dynamic interactions between vehicle and the bridge, bridge deck unevenness, spatial incompleteness of measured data and presence of measurement noise. The inclusion of vehicle inertia, stiffness and damping characteristics into the analysis makes the system time variant, which, in turn, necessitates treatment of the damage detection problem in time domain. The efficacy of the procedures developed is demonstrated by considering detection of localized/distributed damages in a beam-moving oscillator model using synthetically generated vibration data.  相似文献   

10.
An image blind reconstruction, as a blind source separation problem, has been solved recently by independent component analysis (ICA). Based on ICA theory, in this paper, a high resolution image is reconstructed from low resolution and subpixel shifted sequences captured by infrared microscan imaging system. The algorithm has the attractive feature that neither the prior knowledge of the blur kernel nor the value of subpixel misregistrations between the input channels is required. The statistical independence in the image domain is improved by the multiscale Gabor subband decompositions, which are designed for the best ability to cover the whole spatial frequency and to avoid overlapping between the subbands. The mutual information is employed to locate a subband with the least dependent components. In terms of MAP estimator, we combine the super-Gaussian with Markov random field to form a hybrid image distribution. This strategy helps to estimate the separating matrix reasonable to extract the sources with the image properties, that is, sharp enough as well as correlative in local area. The proposed algorithm is capable of performing high resolution image sources which are not strictly independent, and its viability is proved by the computer simulations and real experiments.  相似文献   

11.
Quantum measurement requires an observer to prepare a specific measuring device among alternatives where the prepared basis of states, representing the device, is the way the observer interprets quantum reality into his macroscopic word. We redefine that observer role through a new concept: The observer determination, that is, a selection between the measurement options facing the observer. Unlike the measurement itself that is rationalized as dictated by nature, the observer determination can neither be measured nor proven to be true or false. In this paper we propose a mathematical formalism demonstrating how to define the observer determination. Moreover, we present a scheme showing how the apparently subjective observer determination transform into a measurable quantity.  相似文献   

12.
In this paper, a high-order finite volume method is employed to solve the local energy approximation model equations for a radio-frequency plasma discharge in a one-dimensional geometry. The so called deferred correction technique, along with high-order Lagrange polynomials, is used to calculate the convection and diffusion fluxes. Temporal discretization is performed using backward difference schemes of first and second orders. Extensive numerical experiments are carried out to evaluate the order and level of accuracy as well as computational efficiency of the various methods implemented in the work. These tests exhibit global convergence rate of up to fourth order for the spatial error, and of up to second order for the temporal error.  相似文献   

13.
This paper presents an approach to identify both the location and severity evolution of damage in engineering structures directly from measured dynamic response data. A relationship between the change in structural parameters such as stiffness caused by structural damage development and the measured dynamic response data such as accelerations is proposed, on the basis of the governing equations of motion for the original and damaged structural systems. Structural damage parameters associated with time are properly chosen to reflect both the location and severity development over time of damage in a structure. Basic equations are provided to solve the chosen time-dependent damage parameters, which are constructed by using the Newmark time step integration method without requiring a modal analysis procedure. The Tikhonov regularisation method incorporating the L-curve criterion for determining the regularisation parameter is then employed to reduce the influence of measurement errors in dynamic response data and then to produce stable solutions for structural damage parameters. Results for two numerical examples with various simulated damage scenarios show that the proposed method can accurately identify the locations of structural damage and correctly assess the evolution of damage severity from information on vibration measurements with uncertainties.  相似文献   

14.
A damage identification approach using train-induced responses and sensitivity analysis is proposed for the nondestructive evaluation of railway bridges. The dynamic responses of railway bridges under moving trains composed of multiple vehicles are calculated by a train-bridge dynamic interaction analysis. Using the stiffness variation of the bridge element as an index for damage identification, the sensitivities of train-induced bridge responses to structural damage are analyzed and the sensitivity matrices are formed. By comparing the theoretical measurement responses of one measurement point in two different states, the damage indices of all elements are updated iteratively, and finally the absolute or relative damage is located and quantified. A three-span continuous bridge numerical example proves that the proposed dynamic response sensitivity-based FE model updating damage identification method is not only effective to detect local damage of railway bridges, but also insensitive to the track irregularity and the measurement noise.  相似文献   

15.
The experimental validation of a generalised approach to the sensing of orthogonal contributors to the global error (acoustic potential energy) within a coupled structural–acoustic cavity is presented. The goal is the measurement and control of the global error without any knowledge of the structural dynamics of the noise source, based on an acoustic centric decomposition approach that is applicable to any noise source. Two sensing approaches are attempted, structural and acoustic sensing, to measure the global error within the coupled enclosure. Once estimates of the global error are obtained, minimisation with an adaptive feedforward controller is implemented. The level of achieved attenuation in the global error is compared. The achieved level of attenuation is also compared to the maximum level of attenuation of the global error that can be achieved based on the disturbance/secondary source arrangement. The maximum level of attenuation is evaluated from experimental data, rather than pure theoretical methods.  相似文献   

16.
In this paper, a passive approach to reduce transmitted vibration generated by gear mesh contact dynamics is presented. The approach utilizes the property of periodic structural components that creates stop band and pass band regions in the frequency spectra. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics and sub-harmonics of the gear mesh frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric variations are considered and each cell is assumed to be identical. A periodic shaft is designed and machined in order to reduce transmitted vibration of a pair of spur gears. Analytical and experimental results indicate that transmitted vibrations from gear mesh contact to the bearing supports are reduced at a variety of operational speeds under static torque preload.  相似文献   

17.
Rolling bearing faults are one of the major reasons for breakdown of industrial machinery and bearing diagnosing is one of the most important topics in machine condition monitoring.The main problem in industrial application of bearing vibration diagnostics is the masking of informative bearing signal by machine noise. The vibration signal of the rolling bearing is often covered or concealed by other structural vibrations sources, such as gears. Although a number of vibration diagnostic techniques have been developed over the last several years, in many cases these methods are quite complicated in use or only effective at later stages of damage development. This paper presents an EMD-based rolling bearing diagnosing method that shows potential for bearing damage detection at a much earlier stage of damage development.By using EMD a raw vibration signal is decomposed into a number of Intrinsic Mode Functions (IMFs). Then, a new method of IMFs aggregation into three Combined Mode Functions (CMFs) is applied and finally the vibration signal is divided into three parts of signal: noise-only part, signal-only part and trend-only part. To further bearing fault-related feature extraction from resultant signals, the spectral analysis of the empirically determined local amplitude is used. To validate the proposed method, raw vibration signals generated by complex mechanical systems employed in the industry (driving units of belt conveyors), including normal and fault bearing vibration data, are used in two case studies. The results show that the proposed rolling bearing diagnosing method can identify bearing faults at early stages of their development.  相似文献   

18.
19.
20.
Unknown input excitation and local damages universally coexist in a practical situation. Therefore, in this paper a structural damage identification method based on the transmissibility concept in state space domain is proposed without the need for input measurements. On the basis of the transformation matrix which is computed using the system Markov parameters in state space, the relationship between two different sets of acceleration response measurements can be formulated under the same input excitation. A sensitivity-based model updating approach is applied to identify the local damages by minimizing the difference between the measured response and the reconstructed response. The sensitivity of the dynamic acceleration response with respect to the elemental stiffness factors is derived analytically in the state space domain, which accelerates the process of damage identification. A numerical cantilever beam is employed to validate that the variation of structural parameters induced by the local damages can be accurately and effectively identified without the input excitation information by the proposed method even with measurement noise considered. A laboratory test is further carried out to verify the proposed structural damage identification method based on the response reconstruction technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号