首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-scale micromechanics model is developed in this paper to analyze domain switching in ferroelectric ceramics, using a probabilistic domain switching criterion based on energetic analysis. The microstructure of ferroelectric ceramics at two distinct length scales, domains and grains, has been carefully analyzed. The interaction at domain level is accounted for by energy minimization theory, while the fluctuation at grain level is analyzed using ellipsoidal two-point correlation function. The model has been implemented by Monte Carlo method, and applied to simulate the electric poling and mechanical depoling of Pb(ZrxTi1-x)O3 (PZT) ceramics across morphotropic phase boundary (MPB). The drastically different switching characteristics of PZT ceramics across MPB has been captured, and good agreement with experiments has been observed. The effects of the transformation strains and spontaneous polarizations are highlighted, confirming the proposition of Li et al. [2005. Domain switching in polycrystalline ferroelectric ceramics. Nature Materials 4, 776–781] that the strain compatibility plays a dominant role in domain switching in ferroelectric ceramics.  相似文献   

2.
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.  相似文献   

3.
In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term “hybrid” refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.  相似文献   

4.
In this paper, we compute the constitutive behavior of a ferroelectric ceramic by a plane strain finite element model, where each element represents a single grain in the polycrystal. The properties of a grain are described by the microscopic model for switching in multidomain single crystals of ferroelectric materials presented by Huber et al. [J. Mech. Phys. Solids 47 (1999) 1663]. The poling behavior of the polycrystal is obtained by employing the finite element formulation for electromechanical boundary value problems developed by Landis [Int. J. Numer. Meth. Eng. 55 (2002) 613]. In particular, we address the influence of the single grain properties and the interaction between grains, respectively.  相似文献   

5.
The role of mechanical constraint upon the switching response of a ferroelectric thin film memory capacitor is explored. The memory capacitor is represented by a two dimensional ferroelectric island whose non-linear behaviour is modelled by a crystal plasticity constitutive law within the finite element method. The switching response of the device, in terms of remnant charge storage, is determined as a function of geometry and constraint. Various types of constraint on the ferroelectric capacitor are considered, including the presence of a silicon dioxide passivation layer, a silicon substrate and metallic electrodes. The effect of the relative resistance to 90 degree switching and 180 degree switching is also explored in a tetragonal ferroelectric device. Throughout the study, the finite element calculations are compared with the behaviour of a material element subjected to various degrees of mechanical constraint.  相似文献   

6.
The objective of this study was to use micromechanical finite element models to simulate both the static and cyclic mechanical behaviour of a metal matrix composite: a forged Al 2124 alloy reinforced with 17% SiC particles, at two different temperatures: room temperature and 150°C. In the simulations, periodic unit cell models incorporating the explicit representation of the matrix and the reinforcing particles in both 2D and 3D, were used. Micromechanical models with both idealised and realistic reinforcing particle shapes and distributions were generated. The realistic particle shapes and distributions were inferred from experimental SEM micrographs. The pattern and intensity of the plastic deformation within the matrix was studied and the macroscale behaviour of the composite was inferred from average stress and strain values. In order to include the effects of residual stresses due to the processing of the material, a quenching simulation was performed, prior to the mechanical loading, and its effects on the macroscopic tensile behaviour of the MMC was assessed. The effects of removing the periodicity constraint on the models by using a cell embedding technique was investigated. In order to try and model the deformation behaviour of the matrix more accurately, crystal plasticity models, which included the explicit representation of individual grains were examined for different matrix grain morphologies. The results of the simulations were compared with experimental results for the MMC in terms of macroscopic tensile stress–strain curves. Finally, the effects of different matrix strain hardening models were examined in order to investigate the cyclic behaviour of the MMC.  相似文献   

7.
A novel experimental method is used to measure the evolution of the linear elastic, dielectric and piezoelectric moduli of a soft ferroelectric ceramic during loading. The applied loading states are combinations of uniaxial compressive stress and electric field. Short pulses of electric field and stress are used to increment the remanent strain and polarization state of the material, while the rates of change of electric displacement and strain during unloading are used to assess the moduli. The remanent quantities are treated as state variables, with a view to expressing the moduli as functions of the material state. The piezoelectric moduli are found to vary approximately linearly with polarization, regardless of the remanent strain state, whilst the dielectric moduli and elastic compliances show more complex behaviour. A simple model of the state dependence of the moduli, based on varying the volume fractions of six crystal variants in the tetragonal system, is used to interpret the results.  相似文献   

8.
One of the most notable characteristics of ferroelectric materials is that they could undergo spontaneous polarization and spontaneous strain changes by applied fields. Reorientation of the spontaneous polarization and spontaneous polarization strain of ferroelectric inclusions in ferroelectric composites can change microstructures and affect effective electroelastic properties of ferroelectric composites. Based on orientation distribution function and its evolution as well as switching criterion, non-linear electromechanical coupling behaviour of ferroelectric composites is studied by application of micromechanics. A constitutive model of ferroelectric composites is developed. Comparison between analytical and experimental results shows that the model presented can describe many non-linear electromechanical coupling problems of ferroelectric composites such as polarization or depolarization, etc.  相似文献   

9.
We study the electromechanical behavior of lead zirconate titanate ferroelectric ceramics (PZT), by means of a three-dimensional continuum model for deformable ferroelectric bodies in their polar phase characterized by spontaneous polarization and strain. Spontaneous polarization and strain organize into a domain structure which minimizes electrostatic and elastic energies and which can be modified by the application of electromechanical loads. Such process, which is called “domain switching”, is associated with electrical and mechanical hysteresis and can be studied as a minimization problem for a functional which reminds the micromagnetic energy of deformable ferromagnetics. In this paper, which is the first of two, we deal with the electromechanical model and related constitutive assumptions, as well as with the analysis of domain structure in PZT. In particular, following the discover of a new monoclinic phase in PZT carried by Noheda and co-workers, we analyze twinning between spontaneous strain at the various phase boundaries and show that both non-generic, non-conventional twins and finely-twinned laminates are possible, and also that the presence of a monoclinic phase may explain PZT exceptional properties.  相似文献   

10.
采用添加造孔剂的方法制备了四种不同孔隙率PZT95/5铁电陶瓷,对其进行电场极化,随后开展了准静态单轴压缩实验,讨论了畴变、相变以及孔隙率对极化PZT95/5铁电陶瓷的力学响应与放电特性的影响. 研究结果表明:(1)多孔极化PZT95/5铁电陶瓷非线性力学响应行为主要归因于畴变和相变的共同作用,与内部孔洞变形和坍塌基本无关;(2) 在准静态单轴压缩下极化PZT95/5铁电陶瓷的去极化机制是畴变和相变的共同作用;(3) 孔隙率对极化PZT95/5铁电陶瓷的弹性模量、压缩强度有明显的影响,而对断裂应变的影响较小;(4)极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而线性衰减,但相变开始的临界体积应变却不依赖孔隙率;(5)极化PZT95/5铁电陶瓷电荷饱和释放量随着孔隙率呈线性减小,但孔隙率对电荷释放速率基本没有影响。  相似文献   

11.
This paper presents a time dependent polarization constitutive model suitable for predicting nonlinear polarization and electro-mechanical strain responses of ferroelectric materials subject to various histories of electric fields. The constitutive model is derived based on a single integral form with nonlinear (electric field and temperature dependent) integrand. The total polarization consists of the time-dependent and residual components. The residual component of the polarization is due to polarization switching in the ferroelectric materials. We use an ‘internal clock’ concept to incorporate the effect of electric field on the rate of polarization. The corresponding strain response is determined through the use of third order piezoelectric constant and/or fourth order electrostrictive constant that vary with polarization stage. It is assumed that in absence of polarization, both piezoelectric and electrostrictive constants are zero. To incorporate the effect of temperature on the overall polarization behavior all material parameters in the constitutive model are allowed to change with the ambient temperature. We present numerical studies on the effect of time, temperature, and electric field on the response of ferroelectric material followed by verification of the constitutive model. Experimental data on lead zirconate titanate (PZT) materials available in the literature are used to verify the model.  相似文献   

12.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

13.
匡志平  陈少群 《力学季刊》2015,36(3):517-526
混凝土K&C模型材料参数一般取国外文献中的原始数值,没有根据混凝土强度等级和单元尺寸的不同而作相应的调整.根据相关的试验研究成果,提出了一种确定K&C模型强度参数值的方法,并阐述了K&C模型损伤参数值的调整方法,使得数值计算结果更加合理.运用有限元显式动力分析软件ANSYS/LSDYNA,采用流固耦合方法模拟爆炸荷载作用下钢筋混凝土板的动态响应,混凝土K&C模型取本文确定的参数值,计算结果与试验结果吻合较好,从而验证了K&C模型材料参数取值的正确性.  相似文献   

14.
A phenomenological uniaxial model is derived for implementation in the time domain, which captures the amplitude and frequency dependency of filled elastomers. Motivated by the experimental observation that the frequency dependency is stronger for smaller strain amplitudes than for large ones, a novel material model is presented. It utilizes a split of deformation between a generalized Maxwell chain in series with a bounding surface plasticity model with a vanishing elastic region. Many attempts to capture the behaviour of filled elastomers are found in the literature, which often utilize an additive split between an elastic and a history dependent element, in parallel. Even though some models capture the storage and loss modulus during sinusoidal excitations, they often fail to do so for more complex load histories. Simulations with the derived model are compared to measurements in simple shear on a compound of carbon black filled natural rubber used in driveline isolators in the heavy truck industry. The storage and loss modulus from simulations agree very well with measurements, using only 7 material parameters to capture 2 decades of strain (0.5–50% shear strain) and frequency (0.2–20 Hz). More importantly, with material parameters extracted from the measured storage and loss modulus, measurements of a dual sine excitation are well replicated. This enables realistic operating conditions to be simulated early in the development process, before an actual prototype is available for testing, since the loads in real life operating conditions frequently are a combination of many harmonics.  相似文献   

15.
In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.  相似文献   

16.
This paper aims at evaluating an elastoplastic constitutive model which accounts for combined isotropic-kinematic hardening for complex strain-path changes in a dual-phase steel, DP800. The capability of the model to reproduce the transient hardening phenomena under two-stage non-proportional loading has been assessed through numerical simulations of sequential uniaxial tension and notched tension/shear tests. Finite element simulations with shell elements were performed using the explicit non-linear FE code LS-DYNA. Numerical predictions of the stress–strain response were compared to the corresponding experimental data. The results from the experiments demonstrated that prior plastic deformation has certainly influenced the subsequent work-hardening behaviour of the material under biaxial or shear deformation modes. Furthermore, the numerical simulations from the two-stage uniaxial tension–notched tension and uniaxial tension–shear tests predicted the general trends of the experimental results such as transitory hardening and overall work hardening. However, some discrepancies were found in accurately describing the transient hardening behaviour subsequent to strain path changes between the experiments and numerical simulations.  相似文献   

17.
18.
This study is devoted to the mechanical behaviour of polycrystalline materials with two populations of voids, small spherical voids located inside the grains and larger spheroidal voids located at the grain boundaries. In part I of the work, instantaneous effective stress–strain relations were derived for fixed microstructure. In this second part, the evolution of the microstructure is addressed. Differential equations governing the evolution of the microstructural parameters in terms of the applied loading are derived and their integration in time is discussed. Void growth results in a global softening of the stress–strain response of the material. A simple model for the prediction of void coalescence is proposed which can serve to predict the overall ductility of polycrystalline porous materials under the combined action of thermal dilatation and internal pressure in the voids.  相似文献   

19.
The porous microstructures of metallic foams cause microscopic stress and strain localization under deformation which reduces the damage tolerance and therefore limits application of the materials. In this paper, the deformation of a relatively low porosity porous titanium is examined using two-dimensional (2D) plane strain and three-dimensional (3D) finite element models to identify the accuracy and limitations of such simulations. To generate the finite element models, a simulated microstructure was created based on micrographs of an experimental material. Compared to the 2D models, the 3D models require smaller model size to obtain convergent results. The macroscopic responses predicted by the 3D models are in reasonable agreement with experimental results while the 2D models underestimated the response. In addition, 3D models predicted more uniform microscopic field variable distributions. 2D models predicted higher probability of Von Mises stress and equivalent plastic strain exceeding a certain value and therefore overestimate the failure probability of the material.  相似文献   

20.
本文根据冲击波加载铁电陶瓷的换能原理,建立了斜冲击波加载PZT柱形组件的电响应珲论模型。所考虑的换能装置特点是:(1)柱形组件由n块PZT空心圆盘并联堆叠而成:(2)PZT样品在冲击波压缩区具有恒定电导率r:(3)外电路由串联的电感L和电阻R以及并联电容C_p组成。数值计算结果表明,这种柱形爆电换能器用来提供大电流,大能量(如2000A、100J)是适宜的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号